• 제목/요약/키워드: ORL Database

검색결과 36건 처리시간 0.017초

가버 텐서를 이용한 얼굴인식 성능 개선 (Efficiency Improvement on Face Recognition using Gabor Tensor)

  • 박경준;고형화
    • 한국통신학회논문지
    • /
    • 제35권9C호
    • /
    • pp.748-755
    • /
    • 2010
  • 본 논문은 가버 텐서(Gabor tensor)를 이용한 얼굴인식 시스템을 제안하였다. 가버 변환은 얼굴 고유의 특징을 잘 나타내주며 외부적인 영향을 줄일 수 있어 인식률 향상에 기여한다. 이러한 특징을 이용한 3차원의 텐서를 구성하여 얼굴인식을 수행하는 방법을 제안한다. 3차원의 가버 텐서를 입력으로 하여 기존의 1차원이나 2차원 주성분 분석법(PCA)보다 다양한 특징을 이용할 수 있는 다중선형 주성분 분석법(Multilinear PCA)를 수행한 다음 선형 판별법(LDA)을 수행하는 얼굴인식 방법을 제안하였다. 이러한 방법들은 표정이나 조명등의 변화에 강인한 특성을 가진다. 제안한 방법은 매트랩(Matlab)을 이용하여 실험하였다. ORL과 Yale 데이터베이스를 이용한 실험 결과를 기존의 방법들과 비교하였을 경우 제안한 방법이 기본적인 1차원 주성분 분석법보다 최대 9~27% 향상된 우수한 인식성능을 나타냄을 확인할 수 있었다.

선형판별법과 레이디얼 기저함수 신경망 결합에 의한 얼굴인식 (Face Recognition by Combining Linear Discriminant Analysis and Radial Basis Function Network Classifiers)

  • 오병주
    • 한국콘텐츠학회논문지
    • /
    • 제5권6호
    • /
    • pp.41-48
    • /
    • 2005
  • 이 논문은 얼굴인식을 수행하기 위해서 이미 잘 알려진 주성분 분석법과 선형판별 분석법에 레이디얼 기저 함수 신경망을 결합한 인식 알고리즘을 제시하였다. 입력된 원래의 얼굴영상은 주성분분석법을 통하여 차원을 줄인 고유 얼굴 가중치를 산출한다. 이 가중치 벡터를 선형판별 분석법의 입력데이터로 사용하여 선형판별분석의 변환행렬을 계산할 때 클래스 내의 분산행렬에서 특이점이 발생하지 않도록 하면서 특징벡터를 산출하여 인식을 수행하였다. 두 번째 시도에서는 선형판별분석법에 의해 생성된 특징벡터를 레이디얼 기저 함수 신경망에 입력하여 학습하고 얼굴인식을 수행하였다. ORL DB의 얼굴영상에 대해 실험한 결과 93.5%의 인식률을 얻을 수 있었다.

  • PDF

웨이브릿 영역에서 기하학적 특징과 PCA/LDA를 사용한 얼굴 인식 방법 (Face Recognition Method using Geometric Feature and PCA/LDA in Wavelet Domain)

  • 송영준;김영길
    • 한국콘텐츠학회논문지
    • /
    • 제4권3호
    • /
    • pp.107-113
    • /
    • 2004
  • 본 논문은 얼굴의 기하학적인 특징과 웨이브릿 변환을 사용한 PCA/LDA 복합 방법을 제안하여 얼굴 인식 시스템의 성능을 향상시켰다. 기존의 PCA/LDA 방법은 형태적인 분산의 정도에 따라 유사도를 측정하였기 때문에 얼굴 윤곽선을 정확하게 반영하지 못하였다. 이 단점을 극복하기 위하여 본 논문에서는 눈과 입사이의 거리를 측정하여 질의영상과 훈련영상에서 큰 차이가 있을 경우에는 얼굴내의 눈, 코, 턱 각각의 영역에 대한 에너지를 특징 벡터로 사용하여 기즌의 PCA/LDA로 계산한 유사도를 재산정하였다. 본 논문에서 제안한 방법을 이용해서 ORL 데이터베이스의 400개 얼굴 영상에 대해 모의 실험한 결과 기존의 PCA/LDA 방법보다 약 4%의 인식률 향상이 있음을 보였다

  • PDF

얼굴 인식을 위한 2D DLDA 알고리즘 (2D Direct LDA Algorithm for Face Recognition)

  • 조동욱;장언동;김영길;송영준;안재형;김봉현
    • 한국통신학회논문지
    • /
    • 제30권12C호
    • /
    • pp.1162-1166
    • /
    • 2005
  • 본 논문에서는 얼굴 인식을 위한 새로운 저차원 특징 표현 기법을 제안하였다. 선형판별기법(LDA)는 인기있는 특징추출 기법이다. 하지만 고차원 데이터의 경우에 계산적인 복잡도가 높고 샘플의 개수가 적은 경우 역행렬을 구할 수 없는 특이행렬문제에 직면한다. 이러한 문제들을 해결하기 위해 일반적인 선형판별기법과 다르게 우리는 이차원 이미지 공분산 행렬을 구한 다음 직접선형판별기법(dirct LDA)을 적용하였으며 이것을 2D-DLDA라고 부른다. ORL 얼굴데이터베이스를 사용하여 실험한 결과 기존의 직접선형판별기법보다 성능이 우수함을 확인하였다.

밝기, 명암도, 크기, 회전, 위치 변화에 강인한 얼굴 인식 (Face Recognition Robust to Brightness, Contrast, Scale, Rotation and Translation)

  • 이형지;정재호
    • 대한전자공학회논문지SP
    • /
    • 제40권6호
    • /
    • pp.149-156
    • /
    • 2003
  • 본 논문에서는 변형 Otsu 이진화 방법, Hu 모멘트 및 선형 판별 분석(linear discriminant analysis, LDA)를 기반으로 밝기, 명암도, 크기, 회전 위치 변화에 강인한 얼굴 인식 방법을 제안하고자 한다. 제안한 변형 Otsu 이진화를 사용하여 밝기 및 명암도에 불변한 이진 영상들을 만든다. 그런 후 생성된 얼굴 영상의 경계 영상 및 다단계 이진영상으로부터 총 17개의 Hu 모멘트를 계산한 다음 LDA 방법을 적용하여 최종 특징 벡터를 추출한다. 특히 제안하는 얼굴 인식 방법은 Hu 모멘트를 이용함으로써 크기, 회전 및 위치 변화에도 강인한 특성을 갖고 있다. Olivetti research laboratory (ORL) 데이터베이스와 AR 데이터베이스의 총 100명의 얼굴 영상에 대해 기존의 주요 성문 분석(Principal component analysis, PCA) 방법 및 PCA와 LDA를 결합한 얼굴 인식 방법과 비교 실험한 결과, 제안한 얼굴 인식 방법은 대체적으로 기존 방법보다 뛰어난 인식 성능을 보였다.

변형 Otsu 이진화와 Hu 모멘트에 기반한 얼굴 인식에 관한 연구 (A Study on Face Recognition Based on Modified Otsu's Binarization and Hu Moment)

  • 이형지;정재호
    • 한국통신학회논문지
    • /
    • 제28권11C호
    • /
    • pp.1140-1151
    • /
    • 2003
  • 본 논문에서는 변형 Otsu 이진화 방법과 Hu 모멘트를 기반으로 밝기, 명암도, 크기, 회전, 위치 변화에 강인한 얼굴 인식 방법을 제안한다. 제안하는 변형 Otsu 이진화 방법은 기존의 Otsu 이진화 방법으로부터 또 다른 문턱치 값을 결정하고 이로부터 얻어진 이진 얼굴 영상 2개를 사용함으로써 이진 영상 하나보다 고차원의 특징벡터를 추출할 수 있고, 기존의 Otsu 이진화 방법과 마찬가지로 밝기 및 명암도 변화에 강인한 속성을 가지고 있다. 특징 값으로는 Hu 모멘트를 사용함으로써 크기, 회전, 위치 변화에 강인한 특성을 추가로 가지고 있다 기존의 주요 성분 분석(Principal Component Analysis, PCA) 방법과 제안한 방법을 비교 실험한 결과, 위에서 언급한 5가지 다양한 환경 변화에 대하여 PCA 방법의 평균 인식률은 olivetti Research Laboratory (ORL) 데이터베이스와 AR 데이터베이스에 대해서 각각 68.4%와 51.2%이고, 제안한 방법의 평균 인식률은 각각 93.2%와 81.4%로서 제안한 방법의 인식 성능이 우수함을 확인하였다.

주파수 영역에서 에너지 확률을 이용한 얼굴 특징 추출 (Facial Feature Extraction Using Energy Probability in Frequency Domain)

  • 최진;정윤수;김기현;유장희
    • 대한전자공학회논문지SP
    • /
    • 제43권4호
    • /
    • pp.87-95
    • /
    • 2006
  • 본 논문에서는 얼굴 영상의 에너지 분포 특성을 이용한 새로운 특정추출 방법을 제안한다. 제안된 방법은 얼굴 영상의 에너지 확률과 에너지 랩을 이용해서 데이터 차원이 축소된 유효정보의 추출 및 유효정보의 LDA 해석에 기반을 둔다. 일반적으로, 얼굴 영상은 고유한 에너지 분포 특성을 가지고 있다. 그러나 기존의 많은 DCT 기반 방법들은 이러한 얼굴 영상의 특성을 효과적으로 이용하지 못하는 단점이 있다. 제안된 방법은 이러한 기존 방법의 단점을 개선하기 위해 다음의 3단계 방법을 사용한다. 먼저, DCT 도메인에서 얼굴의 에너지 확률 개념을 정의하고, 이러한 에너지 확률로부터 얼굴의 에너지 맵을 생성한다. 마지막으로, 에너지 확률 지도에 위치한 주파수 계수들에 대한 LDA 적용 및 해석을 통하여 특정 벡터 추출 및 인식을 수행한다. 제안된 방법은 ETRI 데이터베이스에서 96.8%, ORL 데이터베이스에서 100%의 인식률을 보인다. 실험을 통하여 인식 성능의 개선뿐만 아니라, 특정 벡터의 차원 축소에도 효과가 있음을 알 수 있다.

웨이블릿 변환의 특성을 이용한 얼굴 인식 성능 개선 (Performance Improvement of the Face Recognition Using the Properties of Wavelet Transform)

  • 박경준;서석용;고형화
    • 한국항행학회논문지
    • /
    • 제17권6호
    • /
    • pp.726-735
    • /
    • 2013
  • 본 논문에서는 웨이블릿 변환의 특성을 이용한 얼굴인식 방법을 제안하여 인식성능 향상에 관한 연구를 진행하였다. 사용한 이산 웨이블릿 변환은 모웨이블릿의 특징과 비슷한 Daubechies D4 필터이다. 웨이블릿 변환영역 중 LL 대역의 데이터만을 이용할 경우 원본 데이터에 비하여 크기가 줄어들게 되어 인식과정의 속도와 메모리 사용량을 줄일 수 있게 된다. 또한 2차원 데이터의 변형없이 손실을 줄여 인식률을 향상시키기 위하여 2차원 LDA 방법을 적용하였다. 그리고 여기서 얻은 특징벡터를 이용하여 SVM을 수행하도록 하였다. 실험은 Matlab 프로그램을 통하여 ORL 얼굴 데이터베이스와 Yale 얼굴 데이터베이스를 이용하여 실험을 하였고 기존의 방법들과 인식률과 수행시간을 비교를 함으로써 제안한 방법의 우수성을 입증하였다.

Facial Feature Extraction Based on Private Energy Map in DCT Domain

  • Kim, Ki-Hyun;Chung, Yun-Su;Yoo, Jang-Hee;Ro, Yong-Man
    • ETRI Journal
    • /
    • 제29권2호
    • /
    • pp.243-245
    • /
    • 2007
  • This letter presents a new feature extraction method based on the private energy map (PEM) technique to utilize the energy characteristics of a facial image. Compared with a non-facial image, a facial image shows large energy congestion in special regions of discrete cosine transform (DCT) coefficients. The PEM is generated by energy probability of the DCT coefficients of facial images. In experiments, higher face recognition performance figures of 100% for the ORL database and 98.8% for the ETRI database have been achieved.

  • PDF

고유얼굴에 의한 얼굴인식 (Face Recognition using Eigenface)

  • 박중조;김경민
    • 융합신호처리학회논문지
    • /
    • 제2권2호
    • /
    • pp.1-6
    • /
    • 2001
  • 고유얼굴 방법에 의한 얼굴인식은 얼굴 표정의 변화에 둔감한 유용한 인식기법이나 인식률이 낮아 지속적인 연구가 필요한 실정이다. 본 논문에서는 고유얼굴 특징을 이용한 얼굴인식에 있어서 인식률 개선을 위한 효과적인 방안을 제시한다. 이를 위해 본 연구에서는 고유얼굴 특징에 대해 세 종류의 분류기-단일원형 분류기, 최소거리 분류기, 신경회로망 분류기-를 사용하여 그 성능을 평가하고 분석함으로써 고유얼굴 특징의 분포 특성을 고찰하고, 분류기 및 학습용 샘플 영상의 선정이 인식률 제고에 큰 영향을 미침을 보인다. ORL 얼굴영상 데이터베이스를 사용하여 실험한 결과 최소거리 분류기가 가장 좋은 인식률을 나타내었으며, 학습용 샘플영상의 선정과 최소거리 분류기에 의해 91.0%의 인식률을 달성하였다.

  • PDF