Efficiency Improvement on Face Recognition using Gabor Tensor

가버 텐서를 이용한 얼굴인식 성능 개선

  • 박경준 (광운대학교 전자통신공학과) ;
  • 고형화 (광운대학교 전자통신공학과)
  • Received : 2010.07.23
  • Accepted : 2010.09.09
  • Published : 2010.09.30

Abstract

In this paper we propose an improved face recognition method using Gabor tensor. Gabor transform is known to be able to represent characteristic feature in face and reduced environmental influence. It may contribute to improve face recognition ratio. We attempted to combine three-dimensional tensor from Gabor transform with MPCA(Multilinear PCA) and LDA. MPCA with tensor which use various features is more effective than traditional one or two dimensional PCA. It is known to be robust to the change of face expression or light. Proposed method is simulated by MATALB9 using ORL and Yale face database. Test result shows that recognition ratio is improved maximum 9~27% compared with exisisting face recognition method.

본 논문은 가버 텐서(Gabor tensor)를 이용한 얼굴인식 시스템을 제안하였다. 가버 변환은 얼굴 고유의 특징을 잘 나타내주며 외부적인 영향을 줄일 수 있어 인식률 향상에 기여한다. 이러한 특징을 이용한 3차원의 텐서를 구성하여 얼굴인식을 수행하는 방법을 제안한다. 3차원의 가버 텐서를 입력으로 하여 기존의 1차원이나 2차원 주성분 분석법(PCA)보다 다양한 특징을 이용할 수 있는 다중선형 주성분 분석법(Multilinear PCA)를 수행한 다음 선형 판별법(LDA)을 수행하는 얼굴인식 방법을 제안하였다. 이러한 방법들은 표정이나 조명등의 변화에 강인한 특성을 가진다. 제안한 방법은 매트랩(Matlab)을 이용하여 실험하였다. ORL과 Yale 데이터베이스를 이용한 실험 결과를 기존의 방법들과 비교하였을 경우 제안한 방법이 기본적인 1차원 주성분 분석법보다 최대 9~27% 향상된 우수한 인식성능을 나타냄을 확인할 수 있었다.

Keywords

References

  1. Stan Z. Li and Anil K. Jain, "Handbook of Face Recognition," Springer, 2004.
  2. A.K. Jain, R.P.W. Duin, and J. Mao, "Statistical Pattern Recognition: A Review," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.22, No.1, Jan. 2000, pp. 4-37. https://doi.org/10.1109/34.824819
  3. R. Chellappa, C.L. Wilson, and S. Sirohey, "Human and Machine Recognition of Faces: A Survey," Proceedings of the IEEE, Vol.83, Issue5, May 1995, pp.705-740. https://doi.org/10.1109/5.381842
  4. J. Yang, Zhang, and et al, "Two dimensional PCA: a net approach to appearance-based face representation and recognition," IEEE Trans. Pattern Anaylsis and Machine Intelligence, Vol.26, No.1, pp.131-137, Jan. 2004. https://doi.org/10.1109/TPAMI.2004.1261097
  5. M. Li and B. Yuan, "2D-LDA: A Statistical linear discriminant analysis for image matrix," Pattern Recognition Letters, 2005, pp 527-532
  6. T. S. Lee, "Imate Representation using 2D Gabor Wavelet," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.18, No.10, Oct. 1996, pp. 957-971.
  7. C. Liu and H. Wechsler, "Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Models for face Recognition," IEEE Trans. Image Processing, Vol.11, No.4, Apr. 2002, pp. 467-476. https://doi.org/10.1109/TIP.2002.999679
  8. R.M. Mutelo, W.L. Woo and S.S Dlay, "Discriminant analysis of the two- dimensional Gabor feature for face recognition," IET Computer Vision, Vol.2, No.2, 2008, pp. 37-49. https://doi.org/10.1049/iet-cvi:20070075
  9. H. Lu, K.N. Plataniotis, and A.N. Venetsanopoulos, "MPCA: Multilinear Principal Component Analysis of Tensor Objects," IEEE Trans, Neural Networks, Vol.19, Jan. 2008, pp. 18-39 https://doi.org/10.1109/TNN.2007.901277
  10. H. Lu, K.N. Plataniotis, and A.N. Venetsanopoulos, "Uncorrelated Multilinear Discriminant Analysis With Regularization and Aggregation for Tensor Object Recognition," IEEE Trans. Neural Networks, Vol.20, 2009, pp.103-123 https://doi.org/10.1109/TNN.2008.2004625
  11. "Olivetti-AT&T database of faces," http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
  12. "Yale Face database," http://cvc.yale.edu/projects/yalefaces/yalefaces.html