Face Recognition Method using Geometric Feature and PCA/LDA in Wavelet Domain

웨이브릿 영역에서 기하학적 특징과 PCA/LDA를 사용한 얼굴 인식 방법

  • 송영준 (충북대학교 정보통신공학과) ;
  • 김영길 (충북대학교 정보통신공학과)
  • Published : 2004.09.01

Abstract

This paper improved the performance of the face recognition system using the PCA/LDA hybrid method based on the facial geometric feature and the Wavelet transform. Because the previous PCA/LDA methods have measured the similarity according to the formal dispersion, they could not reflect facial boundaries exactly In order to recover this defect, this paper proposed the method using the distance between eyes and mouth. If the difference of the measured distances on the query and the training images is over the given threshold, then the method reorders the candidate images according to energy feature vectors of eyes, a nose, and a chin. To evaluate the performance of the proposed method the computer simulations have been performed with four hundred facial images in the ORL database. The results showed that our method improves about 4% recognition rate over the previous PCA/LDA method.

본 논문은 얼굴의 기하학적인 특징과 웨이브릿 변환을 사용한 PCA/LDA 복합 방법을 제안하여 얼굴 인식 시스템의 성능을 향상시켰다. 기존의 PCA/LDA 방법은 형태적인 분산의 정도에 따라 유사도를 측정하였기 때문에 얼굴 윤곽선을 정확하게 반영하지 못하였다. 이 단점을 극복하기 위하여 본 논문에서는 눈과 입사이의 거리를 측정하여 질의영상과 훈련영상에서 큰 차이가 있을 경우에는 얼굴내의 눈, 코, 턱 각각의 영역에 대한 에너지를 특징 벡터로 사용하여 기즌의 PCA/LDA로 계산한 유사도를 재산정하였다. 본 논문에서 제안한 방법을 이용해서 ORL 데이터베이스의 400개 얼굴 영상에 대해 모의 실험한 결과 기존의 PCA/LDA 방법보다 약 4%의 인식률 향상이 있음을 보였다

Keywords