• 제목/요약/키워드: Numerical schemes

검색결과 765건 처리시간 0.026초

Development of shear capacity equations for RC beams strengthened with UHPFRC

  • Mansour, Walid;Sakr, Mohammed;Seleemah, Ayman;Tayeh, Bassam A.;Khalifa, Tarek
    • Computers and Concrete
    • /
    • 제27권5호
    • /
    • pp.473-487
    • /
    • 2021
  • The review of the literature and design guidelines indicates a lack of design codes governing the shear strength of reinforced concrete (RC) beams strengthened with ultrahigh-performance fiber-reinforced concrete (UHPFRC). This study uses the results of a 3D finite element model constructed previously by the authors and verified against an experimental programme to gain a clear understanding of the shear strength of RC beams strengthened with UHPFRC by using different schemes. Experimental results found in the literature along with the numerical results for shear capacities of normal-strength RC and UHPFRC beams without stirrups are compared with available code design guidelines and empirical models found in the literature. The results show variance between the empirical models and the experimental results. Accordingly, proposed equations derived based on empirical models found in the literature were set to estimate the shear capacity of normal-strength RC beams without stirrups. In addition, the term 'shear span-to-depth ratio' is not considered in the equations for design guidelines found in the literature regarding the shear capacity of UHPFRC beams without stirrups. Consequently, a formula estimating the shear strength of UHPFRC and RC beams strengthened with UHPFRC plates and considering the effect of shear span-to-depth ratio is proposed and validated against an experimental programme previously conducted by the authors.

Physical Layer Security for Two-Way Relay NOMA Systems with Energy Harvesting

  • Li, Hui;Chen, Yaping;Zou, Borong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권6호
    • /
    • pp.2094-2114
    • /
    • 2022
  • Due to the wide application of fifth generation communication, wireless sensor networks have become an indispensable part in our daily life. In this paper, we analyze physical layer security for two-way relay with energy harvesting (EH), where power splitter is considered at relay. And two kinds of combined methods, i.e., selection combining (SC) and maximum ratio combining (MRC) schemes, are employed at eavesdropper. What's more, the closed-form expressions for security performance are derived. For comparison purposes, this security behaviors for orthogonal multiple access (OMA) networks are also investigated. To gain deeper insights, the end-to-end throughput and approximate derivations of secrecy outage probability (SOP) under the high signal-to-noise ratio (SNR) regime are studied. Practical Monte-Carlo simulative results verify the numerical analysis and indicate that: i) The secure performance of SC scheme is superior to MRC scheme because of being applied on eavesdropper; ii) The secure behaviors can be affected by various parameters like power allocation coefficients, transmission rate, etc; iii) In the low and medium SNR region, the security and channel capacity are higher for cooperative non-orthogonal multiple access (NOMA) systems in contrast with OMA systems; iv) The systematic throughput can be improved by changing the energy conversion efficiency and power splitting factor. The purpose of this study is to provide theoretical direction and design of secure communication.

Multipoint variable generalized displacement methods: Novel nonlinear solution schemes in structural mechanics

  • Maghami, Ali;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Structural Engineering and Mechanics
    • /
    • 제83권2호
    • /
    • pp.135-151
    • /
    • 2022
  • The generalized displacement method is a nonlinear solution scheme that follows the equilibrium path of the structure based on the development of the generalized displacement. This method traces the path uniformly with a constant amount of generalized displacement. In this article, we first develop higher-order generalized displacement methods based on multi-point techniques. According to the concept of generalized stiffness, a relation is proposed to adjust the generalized displacement during the path-following. This formulation provides the possibility to change the amount of generalized displacement along the path due to changes in generalized stiffness. We, then, introduce higher-order algorithms of variable generalized displacement method using multi-point methods. Finally, we demonstrate with numerical examples that the presented algorithms, including multi-point generalized displacement methods and multi-point variable generalized displacement methods, are capable of following the equilibrium path. A comparison with the arc length method, generalized displacement method, and multi-point arc-length methods illustrates that the adjustment of generalized displacement significantly reduces the number of steps during the path-following. We also demonstrate that the application of multi-point methods reduces the number of iterations.

이류확산 방정식 계산을 위한 입방보간유사입자 격자볼츠만 모델 (The Cubic-Interpolated Pseudo-Particle Lattice Boltzmann Advection-Diffusion Model)

  • 김미래;첸빙키;김경천
    • 한국가시화정보학회지
    • /
    • 제20권3호
    • /
    • pp.74-85
    • /
    • 2022
  • We propose a Cubic-Interpolated Pseudo-Particle Lattice Boltzmann method (CIP-LBM) for the convection-diffusion equation (CDE) based on the Bhatnagar-Gross-Krook (BGK) scheme equation. The CIP-LBM relies on an accurate numerical lattice equilibrium particle distribution function on the advection term and the use of a splitting technique to solve the Lattice Boltzmann equation. Different schemes of lattice spaces such as D1Q3, D2Q5, and D2Q9 have been used for simulating a variety of problems described by the CDE. All simulations were carried out using the BGK model, although another LB scheme based on a collision term like two-relation time or multi-relaxation time can be easily applied. To show quantitative agreement, the results of the proposed model are compared with an analytical solution.

Special Quantum Steganalysis Algorithm for Quantum Secure Communications Based on Quantum Discriminator

  • Xinzhu Liu;Zhiguo Qu;Xiubo Chen;Xiaojun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권6호
    • /
    • pp.1674-1688
    • /
    • 2023
  • The remarkable advancement of quantum steganography offers enhanced security for quantum communications. However, there is a significant concern regarding the potential misuse of this technology. Moreover, the current research on identifying malicious quantum steganography is insufficient. To address this gap in steganalysis research, this paper proposes a specialized quantum steganalysis algorithm. This algorithm utilizes quantum machine learning techniques to detect steganography in general quantum secure communication schemes that are based on pure states. The algorithm presented in this paper consists of two main steps: data preprocessing and automatic discrimination. The data preprocessing step involves extracting and amplifying abnormal signals, followed by the automatic detection of suspicious quantum carriers through training on steganographic and non-steganographic data. The numerical results demonstrate that a larger disparity between the probability distributions of steganographic and non-steganographic data leads to a higher steganographic detection indicator, making the presence of steganography easier to detect. By selecting an appropriate threshold value, the steganography detection rate can exceed 90%.

Transient heat transfer of unidirectional (1D) and multidirectional (2D/3D) functionally graded panels

  • Samarjeet Kumar;Vishesh Ranjan Kar
    • Steel and Composite Structures
    • /
    • 제49권5호
    • /
    • pp.587-602
    • /
    • 2023
  • This article presents the numerical modelling of transient heat transfer in highly heterogeneous composite materials where the thermal conductivity, specific heat and density are assumed to be directional-dependent. This article uses a coupled finite element-finite difference scheme to perform the transient heat transfer analysis of unidirectional (1D) and multidirectional (2D/3D) functionally graded composite panels. Here, 1D/2D/3D functionally graded structures are subjected to nonuniform heat source and inhomogeneous boundary conditions. Here, the multidirectional functionally graded materials are modelled by varying material properties in individual or in-combination of spatial directions. Here, fully spatial-dependent material properties are evaluated using Voigt's micromechanics scheme via multivariable power-law functions. The weak form is obtained through the Galerkin method and solved further via the element-space and time-step discretisation through the 2D-isoparametric finite element and the implicit backward finite difference schemes, respectively. The present model is verified by comparing it with the previously reported results and the commercially available finite element tool. The numerous illustrations confirm the significance of boundary conditions and material heterogeneity on the transient temperature responses of 1D/2D/3D functionally graded panels.

Enhanced Message Authentication Encryption Scheme Based on Physical-Layer Key Generation in Resource-Limited Internet of Things

  • Zeng Xing;Bo Zhao;Bo Xu;Guangliang Ren;Zhiqiang Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권9호
    • /
    • pp.2546-2563
    • /
    • 2024
  • The Internet of Things (IoT) is facing growing security challenges due to its vulnerability. It is imperative to address the security issues using lightweight and efficient encryption schemes in resource-limited IoT. In this paper, we propose an enhanced message authentication encryption (MAE) scheme based on physical-layer key generation (PKG), which uses the random nature of wireless channels to generate and negotiate keys, and simultaneously encrypts the messages and authenticates the source. The proposed enhanced MAE scheme can greatly improve the security performance via dynamic keyed primitives construction while consuming very few resources. The enhanced MAE scheme is an efficient and lightweight secure communication solution, which is very suitable for resource-limited IoT. Theoretical analysis and simulations are carried out to confirm the security of the enhanced MAE scheme and evaluate its performance. A one-bit flipping in the session key or plain texts will result in a 50%-bit change in the ciphertext or message authentication code. The numerical results demonstrate the good performance of the proposed scheme in terms of diffusion and confusion. With respect to the typical advanced encryption standard (AES)-based scheme, the performance of the proposed scheme improves by 80.5% in terms of algorithm execution efficiency.

FCBAFL: An Energy-Conserving Federated Learning Approach in Industrial Internet of Things

  • Bin Qiu;Duan Li;Xian Li;Hailin Xiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권9호
    • /
    • pp.2764-2781
    • /
    • 2024
  • Federated learning (FL) has been proposed as an emerging distributed machine learning framework, which lowers the risk of privacy leakage by training models without uploading original data. Therefore, it has been widely utilized in the Industrial Internet of Things (IIoT). Despite this, FL still faces challenges including the non-independent identically distributed (Non-IID) data and heterogeneity of devices, which may cause difficulties in model convergence. To address these issues, a local surrogate function is initially constructed for each device to ensure a smooth decline in global loss. Subsequently, aiming to minimize the system energy consumption, an FL approach for joint CPU frequency control and bandwidth allocation, called FCBAFL is proposed. Specifically, the maximum delay of a single round is first treated as a uniform delay constraint, and a limited-memory Broyden-Fletcher-Goldfarb-Shanno bounded (L-BFGS-B) algorithm is employed to find the optimal bandwidth allocation with a fixed CPU frequency. Following that, the result is utilized to derive the optimal CPU frequency. Numerical simulation results show that the proposed FCBAFL algorithm exhibits more excellent convergence compared with baseline algorithm, and outperforms other schemes in declining the energy consumption.

Study on the cantilever ratio optimization of high-temperature molten salt pump for molten salt reactor based on structural integrity

  • Xing-Chao Shen;Yuan Fu;Jian-Yu Zhang;Jin Yang;Zhi-Jun Li
    • Nuclear Engineering and Technology
    • /
    • 제56권9호
    • /
    • pp.3730-3739
    • /
    • 2024
  • The high-temperature molten salt pump is the core equipment in the small modular molten salt reactor with media temperatures up to 700 ℃. The cantilever ratio of the molten salt pump is usually large. Excessively large cantilever ratios cause increased deformations and rotational amplitudes at the impeller, thus affecting the operational stability of the main pump; small cantilever ratios cause heavy temperature gradients, thus affecting the structural integrity evaluation. This paper used numerical simulation methods to calculate and analyze the temperature field, stress, and structural integrity, optimized the pump shaft cantilever length of the original scheme based on structural integrity using the dichotomy method, and analyzed the rotor dynamics of the optimization results. The results of this study show that the thermal expansion load caused by the temperature difference has a significant mechanical effect on the structure; the first-order critical speed of the rotor system of the optimized schemes has been improved, and the amplitude of the unbalanced response has been significantly reduced, which not only improves the operational stability of the rotor, also contributes to the compact design of the main pump of a small modular molten salt reactor.

3차원 불균질 횡등방성 매질에 대한 탄성파 초동 주시 모델링 (Seismic First Arrival Time Computation in 3D Inhomogeneous Tilted Transversely Isotropic Media)

  • 정창호;서정희
    • 지구물리와물리탐사
    • /
    • 제9권3호
    • /
    • pp.241-249
    • /
    • 2006
  • 한국의 지질 환경은 암석 분포가 매우 다양하고 복잡한 구조 활동의 영향을 받아 지하매질의 이방성 특성이 국부적으로 심하게 변화한다. 기존의 이방성 주시 모델링의 경우 지질 모델을 2차원으로 단순화시킴으로써 이러한 복잡한 지질 환경을 제대로 고려할 수 없었다. 또한 약 이방성 가정을 사용하여 실제로 나타날 수 있는 지하 매질의 심각한 이방성 영향을 주시 모델링에서 고려할 수 없었다. 이에 이 연구에서는 보다 실제적이고 복잡한 3차원 횡등방성 매질(transversely isotropic media)에서 q-P파의 초동 주시 양상을 모사할 수 있는 주시 모델링 알고리듬을 개발하였다. 이 알고리듬에서는 2차원 비선형 주시 내삽(2D nonlinear traveltime interpolation) 기법과 주시의 3차원 격자 채움법(mapping)을 이용한 직접 전파법(direct calculation)을 통해 급격한 물성의 변화에도 주시 계산이 가능하도록 하였다. 또한, 최소 주시 계산과정에서 수치 미분을 통한 최대 경사법(steepest descent method)을 사용하여 약 이방성 가정을 극복하였다. 개발된 알고리듬은 해석해와 비교하여 그 타당성을 검증하였고 3차원 2층구조에 대한 주시 계산을 수행하여 물성이 급격히 변화하는 모델에 대해서도 안정적으로 주시 계산이 이루어짐을 확인하였다. 이 연구에서 개발한 3차원 주시 모델링 알고리듬은 향후 구조보정이나 토모그래피 알고리듬 개발에 사용될 수 있을 것으로 기대한다.