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Abstract 

 
Federated learning (FL) has been proposed as an emerging distributed machine learning 
framework, which lowers the risk of privacy leakage by training models without uploading 
original data. Therefore, it has been widely utilized in the Industrial Internet of Things (IIoT). 
Despite this, FL still faces challenges including the non-independent identically distributed 
(Non-IID) data and heterogeneity of devices, which may cause difficulties in model 
convergence. To address these issues, a local surrogate function is initially constructed for 
each device to ensure a smooth decline in global loss. Subsequently, aiming to minimize the 
system energy consumption, an FL approach for joint CPU frequency control and bandwidth 
allocation, called FCBAFL is proposed. Specifically, the maximum delay of a single round is 
first treated as a uniform delay constraint, and a limited-memory Broyden-Fletcher-Goldfarb-
Shanno bounded (L-BFGS-B) algorithm is employed to find the optimal bandwidth allocation 
with a fixed CPU frequency. Following that, the result is utilized to derive the optimal CPU 
frequency. Numerical simulation results show that the proposed FCBAFL algorithm exhibits 
more excellent convergence compared with baseline algorithm, and outperforms other 
schemes in declining the energy consumption. 
 
 
Keywords: Federated learning (FL), industrial internet of things (IIoT), heterogeneity, 
frequency control, bandwidth allocation.  
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1. Introduction 

Traditional industrial manufacturing tends to become more and more intelligent and 
informatized due to the swift progress of both the internet of things (IoT) and artificial 
intelligence (AI) [1-2]. As a result, the Industrial Internet of Things (IIoT) has emerged. There 
are billions of diverse industrial devices connected to the edge of the network [3]. Moreover, 
a large number of industrial tasks rely on real-time monitoring and decision support, whereby 
various sensors and controllers generate massive amounts of data to support them [4-5]. Since 
these data usually contain private information [6], it is essential to protect such important 
information from leakage during data processing. For traditional centralized machine learning 
(ML) approach, it may result in privacy leakage because it collects all the data into a data 
center for uniform handling [7-8]. For example, some IIoT applications involve location 
information of transportation vehicles, and unauthorized access or leakage of such location 
data may pose a threat to the security and privacy of supply chains [9]. Moreover, massive 
industrial equipment data need to be transmitted over wireless network, which incurs 
unacceptable communication traffic [10]. 

As a distributed ML paradigm, FL is expected to alleviate concerns about data privacy 
leakage and huge overhead posed by centralized ML [11]. This technology deploys ML 
models on multiple devices [12-13] and allows them to cooperatively construct a shared 
learning model as well as maintaining all training data on edge devices [14]. FL only needs to 
send the model parameters to the data center, which significantly lessens cost while well 
protecting data privacy. FL has been quickly applied and developed [15-24]. On one hand, the 
advances in memory elements have provided favorable conditions for large amounts of data 
collecting and storing. On the other hand, these devices are typically equipped with high-
performance chips, which makes it easy to complete the model training tasks in FL. 

Despite the above advantages of FL, there are a couple of challenges that need to tackle. In 
practice, the distribution of data on devices is usually non-independent identically distributed 
(Non-IID) data [15]. Many researchers have devoted a lot of work to address this [16-18], an 
example is the widely used FedAvg utilizes a mean stochastic gradient descent (SGD) strategy 
[16], which shows excellent performance on heterogeneous data, but still has limitations due 
to the lack of convergence analysis. Based on the derived upper bound on the expected weight 
divergence, Zhao et al. [17] introduced a federated averaging approach aiming at mitigating 
the distribution divergence presented in Non-IID data. You et al. [18] proposed the federated 
gradient scheduling, an enhanced method utilizing historical gradient sampling. It gathers and 
samples user gradients to solve the Non-IID problem, and also utilizes differential privacy 
techniques to enhance privacy protection. Nevertheless, the above methods proposed for the 
Non-IID problem ignore the massive cost in FL. 

In reality, FL requires intense exchanges of model updates between the server and clients 
during model training [19]. Unfortunately, in recent years, as deep learning models are getting 
increasingly huge, which often contain up to billions or even trillions of learnable parameters, 
thus incurring huge communication and computing overheads [20-21]. Motivated by this, 
many researchers have devoted their research work to energy conservation in wireless FL 
networks [22-24]. Alishahi et al. [22] adopted a low-complexity bisection algorithm and 
jointly considered the various resources of the devices for minimizing the overall energy 
consumption of the wireless FL network. Kim et al. [23] proposed a joint dataset and 
computation management scheme by integrating learning efficiency and global energy 
consumption. For the sake of lowering the cost of communication caused by frequent model 
interactions in FL, Malan et al. [24] proposed a novel approach of FL and gradual tier freezing, 
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which reduces the transmission cost while guaranteeing the performance of training. However, 
most of them ignore the differences in the performance of various devices. 

To solve the above problems for FL in IIoT system, a novel solution is proposed in this 
article. Aiming at the heterogeneous data, we assume that the loss function is smooth and 
strongly convex for theoretical analysis. Considering local computation and model 
transmission, we start with investigating the computation delay and energy consumption of 
heterogeneous devices. Then, the ultimate objective of this article is defined as an energy 
minimization problem under delay constraint. Owing to the nonconvexity of the original 
problem, we decompose it into two simple sub-problems, which are described as the CPU 
frequency control subproblem and the bandwidth allocation subproblem, respectively. 
Moreover, we devise an iterative method to solve the problem. In the end, the performance of 
the proposed scheme is evaluated by a wide range of experiments. In summary, the 
contributions of this article are mainly in the following aspects: 

(1) We propose a novel FL algorithm to address the challenge for the Non-IID data and 
heterogeneity of devices in IIoT scenario. Specifically, a local proxy function is initially 
constructed for each device to ensure a smooth decline in global loss, and a hyperparameter 
η  is introduced to trade-off between local and global gradient estimation, and the linear 
convergence of the method is proved theoretically. 

(2) To cope with the high energy consumption problem generated by model training in FL, 
a joint CPU frequency control and bandwidth allocation approach, called FCBAFL is proposed. 
Considering the synchronous communication and limited bandwidth resource, the ultimate 
goal of this article is characterized as minimizing energy consumption under delay constraint. 
Due to the nonconvexity of the original problem, the proposed scheme splits it into two 
subproblems to solve. 

(3) Extensive numerical simulations show that FCBAFL has higher and stable convergence 
compared with baseline algorithm on unbalanced MNIST dataset. Moreover, the proposed 
algorithm can decrease the energy consumption of IIoT system to a certain extent while 
satisfying various delay constraints. 

The remainder of the article is organized as follows. Section 2 presents the system model 
and problem formulation. Section 3 provides the solution to the problem. Section 4 offers 
experimental numerical results that demonstrate the superiority of the proposed method. 
Section 5 summarizes the work of this article. 

...

edge device 1 edge device 2 edge device 3 edge device N

local training local training local training local training

1f 2f 3f Nf

 

 
Fig. 1. System model. 
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2. System Model 
We consider a framework of FL system in an IIoT scenario, which includes a central server 

and multiple edge devices, as shown in Fig. 1. The central server is located in the center of the 
region and provides basic model communication and aggregation services. The set of edge 
devices is defined as {1,2,..., }N=Ν , where N  denotes the number of edge devices. The 
edge devices generate local models by local training, the dataset produced on device n  is 
expressed as 1{( , )} nd

n i i iD x y == , where ix  is sample i -th input sample and iy  denotes its 

output label. And nd  represents the data size of nD . Therefore, the local loss function on 
device n 's dataset can be expressed as 
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where ω  and ( , , )n i if x yω  represent the model parameter and loss function, 

respectively. The purpose of FL is to find an optimal model parameter * dRω ∈  to 
minimize the global loss function, denoted as 
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2.1 FL Process 

To facilitate the analysis, this article assumes that local loss function is smooth and strongly 
convex. 
Assumption 1: ( )nF ⋅  is L-smooth, , ' dRω ω∀ ∈  

 
2( ) ( ') ( '), ' || ' ||

2n n n
LF F Fω ω ω ω ω ω ω≤ + < ∇ − > + −  (3) 

Assumption 2: ( )nF ⋅  is μ-strong convex (since the Hessian of ( )nF ⋅   can be positive 

semi-definite),  dR∈∀ ',ωω  
 

2( ) ( ') ( '), ' || ' ||
2n n nF F F µω ω ω ω ω ω ω≥ + < ∇ − > + −  (4) 

The assumptions are similar to the l2-regularized linear regression model 
221( ) ( , )

2 2n i if x y µω ω ω= < > − + , and let /Lρ µ=  be the condition number of ( ) 'nF s⋅  

Hessian matrix. In each round of iteration, central server interacts with the edge devices in the 
following process. 

2.1.1 Local model updates 
Device n  first receives the global model parameter and gradient information (which are 

given in (10) and (11) below, respectively) from the previous global round to minimize the 
proxy loss function, which is denoted as 
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Instead of 1( )tF ω −∇ , we utilize 
1t

F
−−

∇  as the estimate of the global gradient, due to the 
fact that the latter can be obtained from the edge device information via the server, while the 
former is unrealistic. Moreover, we have 

 1
1( ) ( ) ( )

t
t t
n n nL F F Fω ω η ω

−−
−∇ = ∇ + ∇∇ −∇  (6) 

where a variable hyperparameter η  is introduced to achieve weighted estimation of local and 
global gradient. The key of this algorithm is that each device can solve (5) and obtain an 
approximate solution t

nω  that satisfies 
 1|| ( ) || || ( ) ||,t t t t

n n nL L nω θ ω −∇ ≤ ∇ ∀  (7) 

Here, [0,1]θ ∈  denotes the local accuracy. Note that ( )t
nL ω  is also L-smooth and μ-

strongly convex because it has the same Hessian matrix as ( )nF ⋅ . Therefore, the objective in 
(5) can be solved by gradient descent algorithm. It has been shown that this can achieve linear 
convergence [25], as follows 

 * *
0( ) ( ) (1 ) ( ( ) ( ))t t k t t

n k n n nL x L x c h L x L x− ≤ − −  (8) 

where kx  and *x  represent the model of the k -th local iteration and optimal solution of (5), 
respectively. Both c  and h  are constants, whose values depend on ρ . According to [14], the 
problem in (5) can be solved eventually while satisfying (7) in lQ  rounds, which is represented 
as 

 2 logl
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h
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=  (9) 

2.1.2 Global model updates 

The local model t
nω  and gradient ( )t

n nF ω∇  at each edge device are sent to the central server 
for aggregating a new global model and gradient, which are denoted respectively as 
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The central server then broadcasts them to all devices. This process is repeated in  gQ  
rounds until the global model in (1) can reach convergence for an arbitrary small constant 

0ε >  and when (12) is satisfied 
 *( ) ( ) ,t

gF F t Qω ω ε− ≤ ∀ ≥  (12) 
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where *ω  is the optimal solution to (1). And the number of global rounds required for the 
global model to reach this convergence condition is 

 0 *1 ( ) ( )logg
F FQ ω ω

θ ε
−

=  (13) 

the proof of this conclusion can also be found in [14]. 

2.2 Computation Model and Communicaton Model 
In the local model updating phase, the computation delay and energy consumption generated 

by a single local training of device n  are respectively 
 cp n n

n
n

c dT
f

=  (14) 

 2cp
n n n nE c d f σ=  (15) 

where nc  and nf  denote the number of CPU cycles required for device n  to compute a data 
unit and its operating frequency, respectively. Let σ  denote the effective capacitance 
coefficient of the devices' computation module [26]. 

The communication process includes two stages, uplink and downlink, for local model 
uploading and global model broadcasting, respectively. Since the power and bandwidth of 
central server are much larger than that of the devices, the downlink broadcasting delay can 
be ignored compared with the uplink transmission delay. All devices upload models based on 
the orthogonal frequency division multiple access protocol after completing local training. 
According to Shannon formula, the data transmission rate of device n  is denoted as 

 
2

0

log 1 n n
n n

n

p hR b B
b BN

 
= + 

 
 (16) 

where B  represents the total bandwidth of the central server, (0,1)nb ∈  is the proportion of 

bandwidth allocated by the central server for device n  in each round of communication. np  

and nh  denote the transmission power and channel gain of device n , respectively. And 0N  
is the noise power spectral density. Then, the transmission delay and energy consumption 
incurred by device n  during a communication round are respectively 
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where ns  represents the data size of the model parameter nω  and gradient ( )n nF ω∇  uploaded 
by device n . 

2.3 Unified Model 
Note that the global model can only be updated after all local models have been received, 

which can be presented as 
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We should note that gT  must satisfy the QoS requirement TQ , which is expressed as 
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and it can be transformed into 
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Similarly, the energy consumption of all devices in a single FL round can be calculated as 
 

 

2

2
0

( )

log 1

co cp
g n l n

n

n n
l n n n

n n n
n

n

E E Q E

p s Q c d f
p hb B

b BN

σ

∈

∈

= +

 
 
 = +
  

+  
   

∑

∑

Ν

Ν

 (22) 

To facilitate the description of the problem below, let 1 2{ , ,..., }Nb b b=b  denote the set of 
bandwidth proportion allocated by the center server for all devices in a round of FL 
communication. And let 1 2{ , ,..., }Nf f f=f  denote the set of CPU frequencies of all devices. 

2.4 Problem Formulation 
Apparently, the goal of minimizing system latency and energy consumption cannot be 

satisfied at the same time. For example, to decrease the training delay, edge device needs to 
operate at high frequency, which also leads to higher energy consumption. Thus, the problem 
we will address is minimizing the energy consumption at the same time meeting the delay 
constraint, which is given by 
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 s.t.    (0,1),nb n∈ ∀ ∈Ν  (23a) 
 min max ,n n nf f f n≤ ≤ ∀ ∈Ν  (23b) 
 min max ,n n np p p n≤ ≤ ∀ ∈Ν  (23c) 
 1n
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where constraint (23a) represents the proportion of bandwidth allocated by the central server 
for the device n  in one round of communication. The ranges of CPU frequency and 
transmission power of each device are indicated by constraints (23b) and (23c), respectively. 
Constraint (23d) represents that the bandwidth of the central server is fully exploited in each 
round of communication. Constraint (23e) indicates the QoS requirement, i.e., delay constraint. 

3. Solutions to Problem 

In this section, we present an FL approach based on CPU frequency control and bandwidth 
allocation aiming at the issue of minimizing energy consumption under delay constraint. 

Apparently, 0P  is challenging because the variables nb  and nf  are coupled with each 
other in (23e). Thus, we decompose it into two subproblems: the energy consumption 
minimization for global model aggregation and local model training, which are respectively 
expressed as 
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For simplicity of the problem, the transmit power np  of each device takes a uniform 

constant value *
np . And the size of model parameters ns  is constant. Obviously, 0P  is a 

problem of bandwidth allocation under multiple bounds by fixing the CPU frequency in 0P , 
which can be transformed into 
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Then, a bounded storage quasi-newton approach called L-BFGS-B is utilized to solve it 
[27]. It is the extension of the L-BFGS algorithm, where the scale matrix only stores the 
information of the most recent iterations, and the stored information of the matrix is updated 
after an iteration is completed, which greatly reduces the computation memory. However, it is 
only suitable for solving unconstrained optimization problems. Targeting this limitation, L-
BFGS-B employs strategies such as backtracking and line search with a limited maximum step 
size to solve constrained optimization problems. Thus, it has the advantages of reasonable 
memory requirement, small iteration cost and fast computation. 

For the convenience of description, we transform '
1P  into a function with b  as the 

independent variable, denoted by ( )f b . The specific flow of the L-BGFS-B algorithm is as 
follows: 
step 1: Set the initial value 0b  and integer m  that determines the number of finite memory 
correction stores, define the initial finite memory matrix and let 0k = . 
step 2: Calculate the gradient using the chain derivation rule. 

 
( )

n n

ff
b∈

∂
∇ =

∂∑
Ν

b  (27) 

step 3: Calculate the search direction by the direct method. 
 ( ( ))k

k kp H f= − ∇ b  (28) 
where kH  denotes the Hessian matrix of the function in the k -th iteration. 

step 4: A line search is performed along the direction of kp , the step mediation factor α  is 
computed, and the parameter is updated to find the minimum of the function. 

 1k k
k kpα+ = +b b  (29) 

step 5: Update the kH  and check for convergence. 

The optimal solution *b  of '
1P  can be obtained by repeating the above steps until one of 

the following three conditions is met:  
(i). The maximum number of iterations is reached.  
(ii). The reduction of the objective function becomes smaller.  
(iii): The paradigm of the projected gradient is sufficiently small. 

Similarly, according to (31a), 2P  can be converted into 
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here, minmax{ , }n n nf f f=   is known as the closed-form solution of '
2P , which is referred to 

as the optimal CPU frequency in this article. Its proof is simple: since nf  is always positive 

and the objective function in '
2P  is monotonically increasing with respect to nf . Hence, nf  
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should be the minimum in its feasible domain (30a). In conjunction with the previous section, 
the detailed flow of the FCBAFL algorithm is shown in Algorithm 1. 

Algorithm 1 FCBAFL 
1:  Input: 0 , [0,1], 0ω θ η∈ >  
2:  for t=1 to gQ  do 

3:      initialize 0 , 0, 0m k= =b  
4:      while not converge 
5:          calculate ( )f∇ b  and kp  based on (27), (28) 

6:          calculate kα , update kb  based on (29) and kH  
7:          k++ 
8:      end while 
9:      for n=1 to N do 
10:        central server broadcasts global model to edge devices  
11:        calculate f  based on (30a), (31) 
12:        local training until satisfying (7) in lQ  iterations 
13:     end for 
14:     edge devices send local models to central server 
15:     local models are aggregated into a new global model based on (16), (17) 
16: end for 

4. Simulation to Results 

In the simulation experiments, we implement the FCBAFL algorithm in PyTorch. The IIoT 
scenario considered in this article contains a central server and 100N = . The bandwidth B  of 
the central server is 1MHz. Each device’s channel gain is generated as Rayleigh fading and 

the path-loss model is 128.1+37.6 10log [ ]d km  [28]. The noise power spectral density is -
174dBm/MHz. The transmit power np  of each device is a uniform constant, i.e., *

np =0.5w, 

and the effective capacitance coefficient σ =10-23w. The amount of data on each device nd  
follows a uniform distribution of [5,10] MB, and they are randomly divided, with 75% for 
training and 25% for testing. The model parameters and gradient size ns  uploaded by each 

device are about 5×105bits. nc  is the number of CPU cycles needed by the device to compute 

a unit of data, follows a uniform distribution of [10, 30] cycles/bit, and nf  is the CPU 
frequency of device, which follows a uniform distribution of [1, 2] GHz. In the following 
experiments, we first evaluate the FCBAFL proposed in this paper in comparison with the 
classical FedAvg [16] algorithm based on MNIST dataset [29]. 

4.1 FL Performance Comparison 
Fig. 2 and Fig. 3 validate the effect of different parameters on the testing accuracy, both 

algorithms use uniform values for the number of local iterations 20lQ =  and the number of 
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global communication rounds 500gQ = . Fig. 2 demonstrates the effect of different batchsize 
and η  on the convergence speed of both algorithms, while Fig. 3 further validates the effect 
of η  on FCBAFL by fixing the batchsize=∞ . 

 
Fig. 2. Comparison of testing accuracy. 

 
In Fig. 2, we first analyze the effect of batchsize on the convergence performance by 

observing two dashed lines and two solid lines, respectively. It can be seen that the smaller the 
batchsize is, the faster the convergence of both algorithms will be. This is because when the 
amount of data is constant, training with a smaller batchsize requires more frequent model 
updates to adapt to changes in the training data more quickly. And when the batchsize is fixed, 
e.g., batchsize=20 or 40, FCBAFL has better performance than FedAvg. This is because 
FCBAFL introduces the hyperparameter η , which enables a better trade-off between the local 
gradient and the global gradient. We also found that an increase in the value of η  also makes 
FCBAFL converge faster, this is because a larger η  implies that the update of the local 
gradient is closer to the global gradient, and equation (6) illustrates this phenomenon well. 

 

 
Fig. 3. Comparison of testing accuracy. 
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In Fig. 3, both methods use full-batch training, i.e., fixing batchsize=∞  again verifies the 
effect of the hyperparameter η  on FCBAFL, especially when η  takes a smaller value such 
as 0.2, FCBAFL does not perform as well as FedAvg, but we can still improve the situation 
by increasing the value of η . We also notice another phenomenon, compared with Fig. 2, the 
four curves in Fig. 3 oscillate significantly less. This is because the small number of data 
samples in the small batch training leads to noisy gradient estimation, and the local gradient is 
prone to deviate from the global gradient thus causing instability in the training process. While 
the full-batch training has more data samples in each batch thus the training process is 
smoother. 

Fig. 4 and Fig. 5 depict the effect of different parameters on the training loss of both FL 
algorithms when using the same comparison settings as Fig. 2 and Fig. 3. Similarly, Fig. 4 
demonstrates the effect of different batchsize and η  on the convergence speed of both 
algorithms, while Fig. 5 further validates the effect of η  on FCBAFL by fixing the batchsize=
∞ . 

 

 
Fig. 4. Comparison of training loss. 

 

 
Fig. 5. Comparison of training loss. 
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Fig. 4 and Fig. 5 present the same results as Fig. 2 and Fig. 3. The introduction of the 
hyperparameter η  leads to a better convergence performance of FCBAFL than FedAvg. 

4.2 Energy Consumption Comparison 
We further demonstrate the advantages of the FCBAFL method proposed in reducing 

resource consumption in Fig. 6-Fig. 8. Fig. 6 compares the energy consumption generated by 
several frequency control strategies under different delay constraints when the number of 
devices is constant. Fig. 7 depicts the variation of energy consumption produced by various 
frequency control strategies with the number of devices. Fig. 8 verifies the variation of energy 
consumption produced by different bandwidth allocation strategies with the number of devices. 

Since FCBAFL combines frequency control and bandwidth allocation, both the optimal 
frequency (OF) strategy and the optimal bandwidth allocation (OA) strategy in the following 
experiments aim at verifying the advantages of FCBAFL in reducing energy consumption. In 
this regard, we perform three experiments. 

 (1). When the number of devices is fixed, adopting the strategy of average bandwidth 
allocation, all devices train at different CPU frequencies under different delay constraints. 

The three CPU frequencies are as follows: 
(a). Random Frequency (RF): All devices take random values within the feasible range of CPU 
frequencies, i.e., min max[ , ],n n nf f f n∈ ∀ ∈Ν . 
(b). Average Frequency (AF): All devices perform the training task at an average frequency, 
i.e., min max( ) / 2,n n nf f f n= + ∀ ∈Ν . 
(c). Optimal Frequency (OF): All devices use the optimal CPU frequency according to 
equation (31), i.e., min *max{ , },n n nf f f n= ∀ ∈Ν . 
 

 
Fig. 6. Comparison of energy consumption generated by various CPU frequencies under different 

delay constraints. 
 

Fig. 6 reflects the impact of various CPU frequencies on the energy consumption under 
different delay constraints. It can be seen that RF is inferior to AF in most cases due to its 
randomness and OF always produces lower energy consumption. In detail, OF reduces the 
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total energy consumption by about 18.3% and 17.9% compared with RF and AF, respectively. 
(2). Adopt the strategy of average bandwidth allocation, all devices train at different CPU 

frequencies under different number of devices. 
 

 
Fig. 7. Comparison of energy consumption generated by various CPU frequencies under different 

number of devices. 
 

Fig. 7 depicts the effect of various CPU frequencies on the energy consumption under 
different number of devices. OF still performs best in all three strategies. The other two 
frequencies produce almost the same energy consumption, which is due to the fact that in 
practical circumstances, the communication energy consumption is usually greater compared 
with the training energy consumption. The strategy of average allocation is applied uniformly, 
so the difference among three schemes is very small. However, compared with RF and AF, 
OF still reduces the total energy consumption by 10.1% and 7.8%, respectively. 

(3). All devices train at the optimal CPU frequency, different bandwidth allocation strategies 
are adopted under different numbers of devices. 

The four bandwidth allocation strategies are as follows: 
(a). Random Allocation (RA): The central server randomly allocates bandwidth to the devices, 
i.e., (0,1),nb n∈ ∀ ∈Ν . 
(b). Average Allocation (AA): The central server allocates the same bandwidth to all devices, 
i.e., 1/ ,nb N n= ∀ ∈Ν . 
(c). SNR-Based Allocation (SA) [30]: The central server allocates bandwidth according to the 
signal-to-noise-ratio(SNR) of device, i.e., 0 0( / ) / ( / ),n n n n n

n
b p h N p h N n

∈

= ∀ ∈∑
Ν

Ν . 

(d). Optimal Allocation (OA): The optimal solution *b  which is obtained by the L-BFGS-B 
algorithm. 
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Fig. 8. Comparison of energy consumption generated by various bandwidth allocation strategies under 

different number of devices. 
 

Fig. 8 illustrates the impact of different bandwidth allocation policies on the energy 
consumption under different number of devices. All four curves are trending upward. However, 
RA strategy does not consider the device’s performance and channel condition at all, resulting 
in low resource utilization and thus increases energy consumption. AA strategy allocates the 
bandwidth equally, which may lead to overuse of resource by some devices and lack of 
resource by others. SA strategy allocates bandwidth according to the device’s channel 
condition, but it does not consider the local training process, so the overall energy consumption 
is still very high. OA strategy optimizes the objective function by considering the delay 
constraint generated by local training and model transmission, thus achieving the optimal 
allocation and generating the lowest energy consumption [31]. Compared with RA, AA and 
SA, OA strategy reduces about 18.9%, 7.9% and 2.6% of the total energy consumption, 
respectively. 

5. Conclusion 

In this article, we propose an iterative FL approach for the wireless IIoT scenario, which is 
called FCBAFL. Its excellent convergence is certified theoretically and analytically by 
designing a local proxy function for each edge device to solve the local problem. Next, we 
present an objective of minimizing energy consumption while satisfying delay constraint 
based on the consideration of synchronous communication. And we describe it as a joint 
optimization problem of CPU frequency control and bandwidth allocation, which is 
subsequently split into two simple subproblems to be solved separately. Simulation results 
demonstrate that FCBAFL performs better convergence than baseline algorithm and reduces 
the energy consumption to a certain extent. 
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