DOI QR코드

DOI QR Code

The Cubic-Interpolated Pseudo-Particle Lattice Boltzmann Advection-Diffusion Model

이류확산 방정식 계산을 위한 입방보간유사입자 격자볼츠만 모델

  • Mirae, Kim (School of Mechanical Engineering, PNU) ;
  • Binqi, Chen (School of Aeronautics and Astronautics, University of Electronic Science and Technology of China) ;
  • Kyung Chun, Kim (Rolls-Royce and Pusan National University Technology Center in Korea)
  • Received : 2022.10.07
  • Accepted : 2022.11.10
  • Published : 2022.11.30

Abstract

We propose a Cubic-Interpolated Pseudo-Particle Lattice Boltzmann method (CIP-LBM) for the convection-diffusion equation (CDE) based on the Bhatnagar-Gross-Krook (BGK) scheme equation. The CIP-LBM relies on an accurate numerical lattice equilibrium particle distribution function on the advection term and the use of a splitting technique to solve the Lattice Boltzmann equation. Different schemes of lattice spaces such as D1Q3, D2Q5, and D2Q9 have been used for simulating a variety of problems described by the CDE. All simulations were carried out using the BGK model, although another LB scheme based on a collision term like two-relation time or multi-relaxation time can be easily applied. To show quantitative agreement, the results of the proposed model are compared with an analytical solution.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant, which is funded by the Korean government (MSIT) (No. 2020R1A5A8018822, No. 2021R1C1C2009287).

References

  1. Ponce Dawson, S., S. Chen, and G.D. Doolen, Lattice Boltzmann computations for reaction- diffusion equations. The Journal of Chemical Physics, 1993. 98(2): p. 1514-1523.
  2. Sukop, M.C. and D.T. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. 2010: Springer Publishing Company, Incorporated. 172.
  3. Benzi, R., S. Succi, and M. Vergassola, The lattice Boltzmann equation: theory and applications. Physics Reports, 1992. 222(3): p. 145-197. https://doi.org/10.1016/0370-1573(92)90090-M
  4. Chai, Z. and T.S. Zhao, Lattice Boltzmann model for the convection-diffusion equation. Physical Review E, 2013. 87(6): p. 063309. https://doi.org/10.1103/physreve.87.063309
  5. van der Sman, R.G.M. and M.H. Ernst, Convection-Diffusion Lattice Boltzmann Scheme for Irregular Lattices. Journal of Computational Physics, 2000. 160(2): p. 766-782. https://doi.org/10.1006/jcph.2000.6491
  6. Safdari, A. and K.C. Kim, Lattice Boltzmann simulation of the three-dimensional motions of particles with various density ratios in lid-driven cavity flow. Applied Mathematics and Computation, 2015. 265: p. 826-843. https://doi.org/10.1016/j.amc.2015.05.106
  7. Mussa, M.A., et al., Simulation of natural convection heat transfer in an enclosure by the lattice-Boltzmann method. Computers & Fluids, 2011. 44(1): p. 162-168. https://doi.org/10.1016/j.compfluid.2010.12.033
  8. Ginzburg, I., Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Advances in Water Resources, 2005. 28(11): p. 1171-1195. https://doi.org/10.1016/j.advwatres.2005.03.004
  9. Shan, X., Simulation of Rayleigh-Benard convection using a lattice Boltzmann method. Physical Review E, 1997. 55(3): p. 2780-2788. https://doi.org/10.1103/PhysRevE.55.2780
  10. McNamara, G. and B. Alder, Analysis of the lattice Boltzmann treatment of hydrodynamics. Physica A: Statistical Mechanics and its Applications, 1993. 194(1-4): p. 218-228. https://doi.org/10.1016/0378-4371(93)90356-9
  11. Zhaoli Guo, T.S. Zhao, Lattice Boltzmann simulation of natural convection with temperature-dependent viscosity in a porous cavity. Progress in Computational Fluid Dynamics, An International Journal, 2005. 5(1/2): p. 110-117. https://doi.org/10.1504/PCFD.2005.005823
  12. Zhou, J.G., A lattice Boltzmann method for solute transport. International Journal for Numerical Methods in Fluids, 2009. 61(8): p. 848-863. https://doi.org/10.1002/fld.1978
  13. Safdari, A. and K.C. Kim, Lattice Boltzmann simulation of solid particles behavior in a three-dimensional lid-driven cavity flow. Computers & Mathematics with Applications, 2014. 68(5): p. 606-621. https://doi.org/10.1016/j.camwa.2014.07.004
  14. Deng, B., B.-C. Shi, and G.-C. Wang, A New Lattice Bhatnagar-Gross-Krook Model for the Convection-Diffusion Equation with a Source Term. Chinese Physics Letters, 2005. 22(2): p. 267. https://doi.org/10.1088/0256-307X/22/2/001
  15. Takewaki, H., A. Nishiguchi, and T. Yabe, Cubic interpolated pseudo-particle method (CIP) for solving hyperbolic-type equations. Journal of Computational Physics, 1985. 61(2): p. 261-268. https://doi.org/10.1016/0021-9991(85)90085-3
  16. Gomberg, J., et al., Time-dependent earthquake probabilities. Journal of Geophysical Research: Solid Earth, 2005. 110(B5): p. n/a-n/a.
  17. Ring, A., et al., Sensitivity of Empirical Metrics of Rate of Absorption in Bioequivalence Studies. Pharmaceutical Research, 2000. 17(5): p. 583-588. https://doi.org/10.1023/A:1007521016985
  18. Ren, X., D. Yan, and C. Wang, Air-conditioning usage conditional probability model for residential buildings. Building and Environment, 2014. 81: p. 172-182. https://doi.org/10.1016/j.buildenv.2014.06.022