Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant, which is funded by the Korean government (MSIT) (No. 2020R1A5A8018822, No. 2021R1C1C2009287).
References
- Ponce Dawson, S., S. Chen, and G.D. Doolen, Lattice Boltzmann computations for reaction- diffusion equations. The Journal of Chemical Physics, 1993. 98(2): p. 1514-1523.
- Sukop, M.C. and D.T. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. 2010: Springer Publishing Company, Incorporated. 172.
- Benzi, R., S. Succi, and M. Vergassola, The lattice Boltzmann equation: theory and applications. Physics Reports, 1992. 222(3): p. 145-197. https://doi.org/10.1016/0370-1573(92)90090-M
- Chai, Z. and T.S. Zhao, Lattice Boltzmann model for the convection-diffusion equation. Physical Review E, 2013. 87(6): p. 063309. https://doi.org/10.1103/physreve.87.063309
- van der Sman, R.G.M. and M.H. Ernst, Convection-Diffusion Lattice Boltzmann Scheme for Irregular Lattices. Journal of Computational Physics, 2000. 160(2): p. 766-782. https://doi.org/10.1006/jcph.2000.6491
- Safdari, A. and K.C. Kim, Lattice Boltzmann simulation of the three-dimensional motions of particles with various density ratios in lid-driven cavity flow. Applied Mathematics and Computation, 2015. 265: p. 826-843. https://doi.org/10.1016/j.amc.2015.05.106
- Mussa, M.A., et al., Simulation of natural convection heat transfer in an enclosure by the lattice-Boltzmann method. Computers & Fluids, 2011. 44(1): p. 162-168. https://doi.org/10.1016/j.compfluid.2010.12.033
- Ginzburg, I., Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Advances in Water Resources, 2005. 28(11): p. 1171-1195. https://doi.org/10.1016/j.advwatres.2005.03.004
- Shan, X., Simulation of Rayleigh-Benard convection using a lattice Boltzmann method. Physical Review E, 1997. 55(3): p. 2780-2788. https://doi.org/10.1103/PhysRevE.55.2780
- McNamara, G. and B. Alder, Analysis of the lattice Boltzmann treatment of hydrodynamics. Physica A: Statistical Mechanics and its Applications, 1993. 194(1-4): p. 218-228. https://doi.org/10.1016/0378-4371(93)90356-9
- Zhaoli Guo, T.S. Zhao, Lattice Boltzmann simulation of natural convection with temperature-dependent viscosity in a porous cavity. Progress in Computational Fluid Dynamics, An International Journal, 2005. 5(1/2): p. 110-117. https://doi.org/10.1504/PCFD.2005.005823
- Zhou, J.G., A lattice Boltzmann method for solute transport. International Journal for Numerical Methods in Fluids, 2009. 61(8): p. 848-863. https://doi.org/10.1002/fld.1978
- Safdari, A. and K.C. Kim, Lattice Boltzmann simulation of solid particles behavior in a three-dimensional lid-driven cavity flow. Computers & Mathematics with Applications, 2014. 68(5): p. 606-621. https://doi.org/10.1016/j.camwa.2014.07.004
- Deng, B., B.-C. Shi, and G.-C. Wang, A New Lattice Bhatnagar-Gross-Krook Model for the Convection-Diffusion Equation with a Source Term. Chinese Physics Letters, 2005. 22(2): p. 267. https://doi.org/10.1088/0256-307X/22/2/001
- Takewaki, H., A. Nishiguchi, and T. Yabe, Cubic interpolated pseudo-particle method (CIP) for solving hyperbolic-type equations. Journal of Computational Physics, 1985. 61(2): p. 261-268. https://doi.org/10.1016/0021-9991(85)90085-3
- Gomberg, J., et al., Time-dependent earthquake probabilities. Journal of Geophysical Research: Solid Earth, 2005. 110(B5): p. n/a-n/a.
- Ring, A., et al., Sensitivity of Empirical Metrics of Rate of Absorption in Bioequivalence Studies. Pharmaceutical Research, 2000. 17(5): p. 583-588. https://doi.org/10.1023/A:1007521016985
- Ren, X., D. Yan, and C. Wang, Air-conditioning usage conditional probability model for residential buildings. Building and Environment, 2014. 81: p. 172-182. https://doi.org/10.1016/j.buildenv.2014.06.022