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Abstract 

 
The remarkable advancement of quantum steganography offers enhanced security for quantum 
communications. However, there is a significant concern regarding the potential misuse of this 
technology. Moreover, the current research on identifying malicious quantum steganography 
is insufficient. To address this gap in steganalysis research, this paper proposes a specialized 
quantum steganalysis algorithm. This algorithm utilizes quantum machine learning techniques 
to detect steganography in general quantum secure communication schemes that are based on 
pure states. The algorithm presented in this paper consists of two main steps: data 
preprocessing and automatic discrimination. The data preprocessing step involves extracting 
and amplifying abnormal signals, followed by the automatic detection of suspicious quantum 
carriers through training on steganographic and non-steganographic data. The numerical 
results demonstrate that a larger disparity between the probability distributions of 
steganographic and non-steganographic data leads to a higher steganographic detection 
indicator, making the presence of steganography easier to detect. By selecting an appropriate 
threshold value, the steganography detection rate can exceed 90%. 
 
 
Keywords: Quantum computing, quantum discriminator, quantum machine learning, 
quantum steganalysis, quantum steganography. 

mailto:yzliubb@163.com
mailto:qzghhh@126.com
mailto:flyover100@163.com
mailto:xiaojun.wang@dcu.ie


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 6, June 2023                                    1675 

1. Introduction 

Steganography is a crucial technology for ensuring information security in communication. 
It effectively safeguards the confidentiality of digital communication by utilizing encryption, 
scrambling, and encoding techniques to embed secret information into the redundant parts of 
communication carriers. This makes it difficult for potential eavesdroppers to detect the 
presence of secret information, and even if they do, extracting the secret information becomes 
challenging. Quantum steganography, which can be seen as the quantum counterpart of 
classical steganography, has been widely employed in the field of quantum secure 
communication [1-2]. Compared to classical steganography, quantum steganography schemes 
are designed with the characteristics of quantum mechanics, making them less susceptible to 
eavesdropping. 

However, steganography is a double-edged sword. While it provides secure and reliable 
methods for confidential communication, it can also be misused by criminals, posing a threat 
to public information security. In recent years, incidents of steganography being exploited in 
espionage, terrorist attacks, and criminal activities have emerged. Terrorists may use 
steganography to embed secret information into carriers such as text documents, pictures, and 
videos, spreading them worldwide through the internet. This poses a serious risk to national 
information security and personal privacy. Therefore, there is a pressing need to detect and 
analyze suspicious carriers for steganography, in order to supervise its use effectively and 
intercept the dissemination of malicious steganographic information.  

The common approach for steganography detection is to analyze the statistical 
characteristics of steganographic carriers to identify abnormal statistical information. This 
enables detectors to determine the presence of malicious secret information hidden within the 
carriers, as well as estimate the amount and embedding position of the steganographic 
information. However, steganalysis is more challenging than steganography itself due to the 
diversity of steganography methods and the vast amount of information on the internet. This 
is why the development of steganalysis lags behind steganography. Given that steganalysis 
involves processing big data, machine learning methods hold great potential for addressing 
this problem. 

In this paper, we focus on quantum steganalysis using a quantum discriminator. Firstly, due 
to the characteristics of steganography, the interference signal from steganographic 
information in the carriers is very weak. Therefore, we propose a data preprocessing method 
to amplify the characteristics of steganographic information. Secondly, we design a quantum 
discriminator based on a quantum neural network to analyze the statistical characteristics of 
steganographic and non-steganographic data. This enables the discrimination of whether 
quantum steganographic information is hidden within the detected carriers. We provide 
numerical results for this method through experiments on a simulation platform. 

The structure of this paper is as follows. In the first chapter, we introduce the development 
of classical steganography and quantum steganography. The second chapter presents related 
works on quantum steganography and steganalysis, as well as quantum machine learning 
methods. The third chapter provides a detailed explanation of the proposed quantum 
steganalysis algorithm. The fourth chapter presents the numerical results. Finally, the fifth 
chapter summarizes the content of this paper and proposes future research prospects. 
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 2. Related works  

2.1 Quantum steganography 
In recent years, the parallel processing capabilities of quantum computing have had a 
significant impact on classical cryptosystems that rely on computational complexity, such as 
the Shor algorithm and quantum Fourier transform. Additionally, the security of quantum 
communication based on quantum mechanical properties has been proven. As a result of the 
development of quantum secure communication, quantum steganography [3-5] has also 
received considerable attention. Quantum steganography typically hides secret information in 
various quantum carriers using coding, encryption, and other technologies. Examples include 
quantum covert communication protocols like quantum key distribution [6], quantum secret 
sharing [7], and quantum secure direct communication [8]. There are also quantum 
steganography protocols based on different multimedia formats [9-10]. 

2.2 Quantum steganalysis 
Steganalysis research is primarily divided into three levels. The first level involves detecting 
the existence of steganographic communication. The second level focuses on estimating the 
amount of embedded steganographic information and identifying the type of steganography 
algorithm. The third level aims to decipher the content of steganographic information within 
the carrier. Due to the high difficulty of steganalysis, current research primarily focuses on the 
first stage, which is the detection of steganographic communication. Generally, advancements 
in steganalysis technology can also drive improvements in steganography. 

Classical steganalysis methods include specific and general approaches. Specific 
steganalysis methods include the chi-square attack method, RS method, spa method [11], and 
WS method [12] for LSB replacement steganography. There is also an HCFCOM-based 
method for LSB matching steganography [13]. From a machine learning perspective, 
steganalysis can be viewed as a binary classification problem [14], particularly for general 
steganalysis methods. These methods employ machine learning techniques such as support 
vector machines [15], neural networks, and clustering to construct classifiers that distinguish 
steganographic carriers from non-steganographic carriers. To handle high-dimensional 
features, Kodovsky et al. proposed an integrated classifier based on Fisher linear discriminant 
[16]. 

Different from classical steganalysis, quantum steganalysis faces a significant challenge 
due to the irreversible damage caused by any observation to a quantum system, which is a 
result of the physical properties of quantum systems. In the study of quantum steganalysis, 
finding the most effective measurement method to accurately identify quantum states plays a 
crucial role. Qu et al. [17] proposed a quantum steganalysis protocol for the steganography 
algorithm based on the BB84 protocol. This protocol compares the difference in probability 
distribution of the quantum carrier before and after steganography. On the other hand, Luo et 
al. [18] developed a quantum steganalysis algorithm specifically for the quantum multimedia 
steganography protocol based on the least significant bit.  

2.2 Quantum machine learning 
The combination of machine learning and 5G has significantly advanced the development of 
the Internet of Things [19-24]. Moreover, it has opened up new possibilities for quantum 
steganalysis. Several popular q-machine learning methods have been recently proposed.  
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One advantage of quantum computing is its ability to accelerate classical linear algebra 
computations, which has led to the development of quantum support vector machines [25] that 
utilize matrix inversion [26]. Quantum optimization [27] has further contributed to the 
improvement of these methods. Additionally, these techniques can be applied to various types 
of quantum neural networks [28]. 

Deep learning is another emerging subdiscipline of machine learning, and quantum 
computers are being employed for deep learning applications that require significant time and 
storage. Examples of such applications include quantum generative adversarial networks [29], 
quantum Boltzmann machines, quantum variational autoencoders, and quantum convolutional 
neural networks [30]. Furthermore, reinforcement learning [31], a more sophisticated field 
within machine learning, focuses on learning over time with the assistance of the environment.  

In the realm of quantum machine learning, the objective is to distinguish between the 
original carrier and the carrier embedded with steganography. The main challenge lies in 
detecting the hidden weak signal of the embedded steganography information amidst 
numerous strong signals. 

Detecting steganography information poses a great challenge in the era of big data. Given 
that machine learning plays a crucial role in processing big data and identifying its statistical 
characteristics, we apply quantum machine learning methods [32-33] to quantum steganalysis 
to address the issue of destructive quantum steganography. In this paper, we propose a method 
for extracting statistical features from quantum steganography carriers using quantum machine 
learning techniques. Additionally, we design a quantum convolutional neural network to 
construct an automatic recognizer for quantum steganography analysis. The feasibility of the 
algorithm is demonstrated through simulation experiments. 

3. Methodology 

3.1 Overview 
The general process of quantum steganography and steganalysis is illustrated in Fig. 1. The 
sender prepares the quantum carrier by encoding steganography information using a coding or 
embedding method. The carrier, along with the steganography information, is then transmitted 
to the receiver through noisy quantum channels. During transmission, a monitoring party may 
secretly detect steganography and retransmit the carrier to the receiver. 
 

 
Fig. 1. General process of quantum steganography and steganalysis. 

 
In pure-state-based quantum communication steganography protocols, the secret 

information is typically encoded onto a series of quantum bit strings based on the keys held 
by all communication parties. Since the steganography detector does not have access to these 
keys, intercepting the transmitted qubits does not reveal the secret information. In such 
protocols, the probability distribution of quantum channels often indicates the presence of 
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secret information to some extent. For instance, in certain protocols, the further the probability 
distribution deviates from high-frequency distributions like uniform or normal distributions, 
the more likely it is that the secret information is concealed within the quantum carrier. 

Using the normal communication carrier and the steganographic carrier directly as input 
data for a quantum neural network poses significant challenges in training the model and 
achieving high accuracy. Therefore, a well-designed preprocessing process is necessary. The 
objective of this preprocessing process is to amplify the steganographic signal within the 
carrier and obtain more effective feature expression. Subsequently, the preprocessed labeled 
data are fed into the parametric quantum circuit for training, resulting in an automatic quantum 
steganalysis recognizer. 

3.2 Preprocessing of quantum communication steganography protocol based 
on pure states 
Let the probability distribution of quantum channel be (1). 
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The equivalent discrimination group is constructed according to its corresponding column, 
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(3) 

The construction of equivalent discrimination groups aims to capture the correlation among 
equivalence discrimination states within the group and extract their characteristics to obtain 
statistical data. This statistical data is then input into quantum neural networks to effectively 
distinguish between steganographic and non-steganographic carriers. 

In the quantum steganography communication protocol, set 0ϕ  as ground state 0  in 

{ } 1
,

k
i i i

ϕ η
=

, and other quantum states satisfy (4). 
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In (4), { }, , ,p I X Y Z∈  and , , ,I X Y Z  are denoted as Pauli operations. This method can 
represent the carrier used in general quantum covert communication. Take the classical 
quantum key distribution protocol BB84 as an example in (5). 
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The equivalent discrimination states are used for preprocessing. As shown in Fig. 2, the 
quantum information is transferred into the amplitude of quantum states by using the quantum 
inverse Fourier transform. Then the quantum information of the abnormal signal is amplified 
by using the amplitude amplification, which is input into the designed quantum neural network 
as training data. 

 

  
Fig. 2. Quantum data preprocessing. 

 
The circuit of quantum amplitude estimation is shown in Fig. 3. 
 

 
Fig. 3. The circuit of quantum amplitude estimation procedure. 
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3.3 Quantum discriminator 
The basic module of the quantum discriminator is composed by unitary qubit rotation gates 
and controlled-not gates as is shown in Fig. 4. The inputs of each basic module are two qubits. 
The structure of the discriminator is changeable according to the number of input qubits as 
shown in Fig. 5.  
 

 
Fig. 4. The fundamental module of the quantum discriminator. 

 

 
 

Fig. 5. Variable structure of the discriminator. 
 

The operations by quantum gates on single qubit or two qubits in a basic module is shown 
in (6).  
 

 

(6) 

When it comes to a rotation gate with the parameter jθ , the gradient of this parameter can 
be obtained by (7). 

 

 
(7) 

 
At the end of the quantum modules, the measurement operation W will be operated to the 

qubits as (8) shows. And the gradient corresponding to the measurement result is shown in (9). 
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The cost function is defined as steganographic detection indicator (SDI) in (10). 
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The training process of the quantum neural network, composed of quantum circuits, is 
depicted in Fig. 6, utilizing the gradient descent method as the parameter update rule. Initially, 
the input data is randomly chosen using a coin flip. The tails and heads of the coin represent 
non-steganography data and steganography data, respectively. After multiple parameter 
updates, the optimal parameters are obtained. The detector then determines whether the input 
carriers are embedded with secret information or not. Throughout the training process, the 
rotation operators’ parameters in the quantum discriminator circuits are initialized randomly. 
The loss function is then minimized to obtain the optimal parameters. 

 

 
 

Fig. 6. Training flow of the discriminator. 
 

The algorithm of the training process is shown in Fig. 7.  The quantum carriers with or 

without encoded secret information { } 1
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   are the input of our 
discriminator. And the detector will give the result on whether the input carriers are embedded 
with secret information or not. During the training process, first we randomly choose some 
values to initial all the parameters of rotation operators in the quantum discriminator circuits. 
Then minimize the loss function and get the optimal parameters. 
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Fig. 7. The algorithm of the quantum discriminator. 

4. Numeral results 

To conduct numerical experiments, a group of quantum states { } 1
,

k
i i i

ϕ η
=

 is prepared for 
quantum secure communication, adhering to a specific probability distribution (such as 
classical uniform distribution, normal distribution, etc.). Each group of quantum states can 
transmit a certain amount of classical information bits based on the corresponding 
communication protocols. We present the results of five experiments, evaluating the 
performance of the discriminator using the Steganography Detection Index (SDI). If the mean 
(or peak) of SDI in each epoch surpasses a certain threshold, it indicates the presence of 
steganography in the quantum communication. 

The first experiment involves two normal distributions, N (0,0.01) and N (0,0.02). The 
curve depicting the SDI with respect to epochs is illustrated in Fig. 8. 
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Fig. 8. The curve representing the SDI over epochs in the experiment using the distributions N 

(0,0.01) and N (0,0.02).  
 

The second experiment involves two normal distributions, N (0,0.1) and N (0,0.2). In this 
experiment, the difference between the two distributions is larger than in the first experiment, 
indicating a higher amount of embedded secret information in the carriers. The curve 
illustrating the SDI over epochs is presented in Fig. 9. 

 

 
Fig. 9. The curve displaying the SDI over epochs in the experiment using the distributions N (0,0.1) 

and N (0,0.2). 
 

The third experiment is conducted using a uniform distribution, U (0,1), and a normal 
distribution, N (0,0). In this experiment, the disparity between the two distributions is greater 
than in the second experiment due to the distinct types of distributions used. Consequently, 
there is an even higher amount of secret information embedded in the carriers compared to the 
second experiment. The curve depicting the SDI over epochs is displayed in Fig. 10. 
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Fig. 10. The curve showing the SDI over epochs in the experiment using the distributions U(0,1) and 

N(0,0). 
 

The fourth experiment is conducted using two uniform distributions, U (0,1) and U (0,0.99). 
The curve illustrating the SDI over epochs is presented in Fig. 11. 

 

 
Fig. 11. The curve illustrating the SDI over epochs in the experiment using the two uniform 

distributions U (0,1) and U (0,0.99). 
 

The fifth experiment involves two uniform distributions, U (0,1) and U (0,0.9). In this 
experiment, the disparity between the two distributions is larger than in the fourth experiment, 
indicating a higher amount of secret information embedded in the carriers. The curve depicting 
the SDI over epochs is displayed in Fig. 12. 
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Fig. 12. The curve depicting the SDI over epochs in the experiment using the distributions U (0,1) and 

U (0,0.9). 
 

Choosing a reasonable threshold, K_th, for the quantum discriminator is crucial as it 
directly impacts the steganography detection rate (SDR), as shown in Table 1. From Table 1, 
it can be observed that the greater the difference between the probability distributions of 
steganographic and non-steganographic data, the higher the SDI, making it easier to detect the 
presence of steganography. 

The selection of K_th is another important aspect to consider. Based on our numerical 
experiments, when K_th is chosen within the range of -0.002 to 0.002, the performance of the 
quantum discriminator is satisfactory. 

 
Table 1. Performance analysis of the quantum discritor. 

Number Probability distribution SDI_AVG K_th SDR 

1 N (0,0.01) N (0,0.02) 0.002 ±0.001 50% 
±0.002 0 

2 N (0,0.1) N (0,0.2) -0.005 ±0.001 80% 
±0.002 60% 

3 U (0,1) N (0,0) -0.352 ±0.001 99.7% 
±0.002 99.4% 

4 U (0,1) U (0,0.99) 0.008 ±0.001 87.5% 
±0.002 75% 

5 U (0,1) U (0,0.9) -0.047 ±0.001 98.9% 
±0.002 95.7% 

 5. Conclusion  
This paper introduces a novel quantum steganalysis algorithm to address the lack of research 
in the field of steganalysis. The algorithm utilizes a quantum discriminator based on quantum 
neural networks to detect the presence of steganography in general quantum secure 
communication schemes using pure state carriers. Simulation results demonstrate the 
feasibility of the proposed quantum steganalysis algorithm and confirm that a higher difference 
between the probability distributions of steganographic and non-steganographic data leads to 
a higher SDR value. The experimental results also highlight the significant influence of the 
threshold value, K_th, on the algorithm’s performance. 
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However, there are certain limitations to this work. Firstly, in the simulation experiments, 
the probability distributions of quantum states before and after steganography are set as 
common distributions. In actual communications, the diversity of steganography methods 
makes it challenging to predict the probability distributions of quantum states in advance or 
describe them using specific probability distributions. Additionally, as the steganography 
embedding rate decreases, it becomes more difficult to detect the differences between quantum 
carriers before and after steganography. Lastly, the current special steganalysis algorithms are 
insufficient to handle the ever-evolving steganography technology. Therefore, there is an 
urgent need to develop universal steganography schemes. 

In future work, we plan to focus on improving the performance of the quantum 
discriminator when steganography has minimal impact on the probability distribution of 
quantum pure state carriers. Additionally, we aim to design algorithms that can detect the 
content of steganography for common methods such as LSB steganography, as the current 
steganography detection primarily focuses on detecting the presence of steganography. 
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