• Title/Summary/Keyword: Numerical schemes

Search Result 757, Processing Time 0.023 seconds

Study on High Accurate Schemes for Simulation of Free-surface Flow (자유표면 유동 시뮬레이션을 위한 고정확도 수치도식의 검토)

  • Park, Jong-Chun;Lee, Byoung-Hyuk;Kim, Jeung-Hu
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.31-36
    • /
    • 2006
  • Numerical schemes for spacing and time are tested to accurately simulate the wave propagation. The tested numerical schemesinclude 2nd-order central differencing, l-order upwind scheme, 2nd-order Leith scheme, 3rd-order MUSCLE, QUICK and QUICKEST schemes in spacing and the Euler and 4th-order Runge-Kutta(R-K) schemes in time. It is seen that more accurate results are expected when the higher-order schemes, especially the schemes combined with a TVD control limiter, are used for solving the wave equation. The 3rd-order upwind scheme with limiter and the 4th-order R-K scheme in tim£ are finally applied to the wave-making simulation in a digital wave tank.

On the Suitability of Centered and Upwind-Biased Compact Difference Schemes for Large Eddy Smulation (I) - Numerical Test - (LES에서 중심 및 상류 컴팩트 차분기법의 적합성에 관하여 (I) - 수치 실험 -)

  • Park, No-Ma;Yoo, Jung-Yul;Choi, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.973-983
    • /
    • 2003
  • The suitability of high-order accurate, centered and upwind-biased compact difference schemes is evaluated for large eddy simulation of turbulent flow. Two turbulent flows are considered: turbulent channel flow at Re = 23000 and flow over a circular cylinder at Re = 3900. The effects of numerical dissipation on the finite differencing and aliasing errors and the subgrid-scale stress are investigated. It is shown through the simulations that compact upwind schemes are not suitable for LES, whereas the fourth order-compact centered scheme is a good candidate for LES provided that proper dealiasing of nonlinear terms is performed. The classical issue on the aliasing error and the treatment of nonlinear terms is revisited with compact difference schemes.

AN IMPROVED ALTERNATIVE WENO SCHEMES WITH PERTURBATIONAL TERMS FOR THE HYPERBOLIC CONSERVATION LAWS

  • KUNMIN SUNG;YOUNGSOO HA;MYUNGJOO KANG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.4
    • /
    • pp.207-231
    • /
    • 2023
  • This paper aims to improve the alternative formulation of the fifth- and sixth-order accurate weighted essentially non-oscillatory (AWENO) finite difference schemes. The first is to derive the AWENO scheme with sixth-order accuracy in the smooth region of the solution. Second, a new weighted polynomial functions combining the perturbed forms with conserved variable to the AWENO is constructed; the new form of tunable functions are invented to maintain non-oscillatory property. Detailed numerical experiments are presented to illustrate the behavior of the new perturbational AWENO schemes. The performance of the present scheme is evaluated in terms of accuracy and resolution of discontinuities using a variety of one and two-dimensional test cases. We show that the resulted perturbational AWENO schemes can achieve fifth- and sixth-order accuracy in smooth regions while reducing numerical dissipation significantly near singularities.

COMPARISON OF DIFFERENT NUMERICAL SCHEMES FOR THE CAHN-HILLIARD EQUATION

  • Lee, Seunggyu;Lee, Chaeyoung;Lee, Hyun Geun;Kim, Junseok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.197-207
    • /
    • 2013
  • The Cahn-Hilliard equation was proposed as a phenomenological model for describing the process of phase separation of a binary alloy. The equation has been applied to many physical applications such as amorphological instability caused by elastic non-equilibrium, image inpainting, two- and three-phase fluid flow, phase separation, flow visualization and the formation of the quantum dots. To solve the Cahn-Hillard equation, many numerical methods have been proposed such as the explicit Euler's, the implicit Euler's, the Crank-Nicolson, the semi-implicit Euler's, the linearly stabilized splitting and the non-linearly stabilized splitting schemes. In this paper, we investigate each scheme in finite-difference schemes by comparing their performances, especially stability and efficiency. Except the explicit Euler's method, we use the fast solver which is called a multigrid method. Our numerical investigation shows that the linearly stabilized stabilized splitting scheme is not unconditionally gradient stable in time unlike the known result. And the Crank-Nicolson scheme is accurate but unstable in time, whereas the non-linearly stabilized splitting scheme has advantage over other schemes on the time step restriction.

Improvement of Element Stability using Adaptive Directional Reduced Integration and its Application to Rigid-Plastic Finite Element Method (적응성 선향저감적분법에 의한 요소의 안정성 향상과 강소성 유한요소해석에의 적용)

  • Park, K.;Lee, Y.K.;Yang, D.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.32-41
    • /
    • 1995
  • In the analysis of metal forming processes by the finite element method, there are many numerical instabilities such as element locking, hourglass mode and shear locking. These instabilities may have a bad effect upon accuracy and convergence. The present work is concerned with improvement of stability and efficiency in two-dimensional rigid-plastic finite element method using various type of elemenmts and numerical intergration schemes. As metal forming examples, upsetting and backward extrusion are taken for comparison among the methods: various element types and numerical integration schemes. Comparison is made in terms of stability and efficiency in element behavior and computational efficiency and a new scheme of adaptive directional reduced integration is introduced. As a result, the finite element computation has been stabilized from the viewpoint of computational time, convergency, and numerical instability.

  • PDF

The Aerodynamic Analysis of Pantograph of the Next Generation High Speed Train (차세대 고속철도 판토그래프의 공력특성 해석)

  • Kang, H.M.;Kim, C.W.;Cho, T.H.;Yoon, S.H.;Kwon, H.B.;Park, C.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.362-367
    • /
    • 2011
  • The aerodynamic performance of the pantograph of the next generation high sped train is analyzed. The calculation of the flow around pantograph is carried cut by FLUENT; by the steady state flow calculation with ${\kappa}-{\omega}$ SST turbulence model, the lift force of the pantograph is computed. For the verification of the numerical schemes am grid systems, flow calculations are performed with the pantograph shape which was used at the experiments performed at Railway Technical Research Institute (RTRI) in Japan. Then, the difference of lift force between numerical am experimental results is about 10%. Therefore, selected numerical schemes and the current grid system is adequate for the analysis am prediction of the aerodynamic performance of panthograph system. Based on these numerical schemes am grid system, the flow around pantograph of the next generation high sped train is calculated and the lift force of the pantograph is predicted; the lift force of the pantograph is about 146N.

  • PDF

Eulerian-Lagrangian Split-Operator Method for the Longitudinal Dispersion Equation (종확산 방정식에 대한 Eulerian-Lagrangian 연산자 분리방법)

  • Jun, Kyung Soo;Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.131-141
    • /
    • 1994
  • Three characteristics-based split-operator methods were applied to a longitudinal pollutant dispersion problem, and the results were compared with those of several Eulerian schemes. The split-operator methods consisted of generalized upwind, two-point fourth-order and sixth-order Holly-Preissmann schemes, respectively, for the advection calculation, and the Crank-Nicholson scheme for the diffusion calculation. Compared with the Eulerian schemes tested, split-operator methods using the Holly-Preissmann schemes gave much more accurate computational results. Eulerian schemes using centered difference approximations for the advection term resulted in numerical oscillations, and those using backward difference resulted in numerical diffusion, both of which were more severe for smaller value of the longitudinal dispersion coefficient.

  • PDF

Magnetohydrodynamics Code Basics

  • RYU DONGSU
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.209-213
    • /
    • 2001
  • This paper describes the numerical solution to the hyperbolic system of magnetohydrodynamic (MHD) equations. First, by pointing out the approximations involved, the deal MHD equations are presented. Next, the MHD waves as well as the associated shocks and discontinuities, are presented. Then, based on the hyperbolicity of the ideal MHD equations, the application of upwind schemes, which have been developed for hydrodynamics, is discussed to solve the equations numerically. As an definite example, one and multi-dimensional codes based on the Total Variation Diminishing scheme are presented. The treatment in the multi-dimensional code, which maintains ${\nabla}{\cdot}$B = 0, is described. Through tests, the robustness of the upwind schemes for MHDs is demonstrated.

  • PDF

A Comparative Study on Single Time Schemes Based on the FEM for the Analysis of Structural Transient Problems (구조물의 시간에 따른 거동 해석을 위한 유한요소법에 기초한 단일 스텝 시간 범주들의 비교연구)

  • Kim, Woo-Ram;Choi, Youn-Dae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.957-964
    • /
    • 2011
  • New time schemes based on the FEM were developed and their performances were tested with 2D wave equation. The least-squares and weighted residual methods are used to construct new time schemes based on traditional residual minimization method. To overcome some drawbacks that time schemes based on the least-squares and weighted residual methods have, ad-hoc method is considered to minimize residuals multiplied by others residuals as a new approach. And variational method is used to get necessary conditions of ad-hoc minimization. A-stability was chosen to check the stability of newly developed time schemes. Specific values of new time schemes are presented along with their numerical solutions which were compared with analytic solution.