DOI QR코드

DOI QR Code

On the Suitability of Centered and Upwind-Biased Compact Difference Schemes for Large Eddy Smulation (I) - Numerical Test -

LES에서 중심 및 상류 컴팩트 차분기법의 적합성에 관하여 (I) - 수치 실험 -

  • 박노마 (서울대학교 기계항공공학부) ;
  • 유정열 (서울대학교 기계항공공학부) ;
  • 최해천 (서울대학교 기계항공공학부)
  • Published : 2003.07.01

Abstract

The suitability of high-order accurate, centered and upwind-biased compact difference schemes is evaluated for large eddy simulation of turbulent flow. Two turbulent flows are considered: turbulent channel flow at Re = 23000 and flow over a circular cylinder at Re = 3900. The effects of numerical dissipation on the finite differencing and aliasing errors and the subgrid-scale stress are investigated. It is shown through the simulations that compact upwind schemes are not suitable for LES, whereas the fourth order-compact centered scheme is a good candidate for LES provided that proper dealiasing of nonlinear terms is performed. The classical issue on the aliasing error and the treatment of nonlinear terms is revisited with compact difference schemes.

Keywords

References

  1. Moin, P., 2002, 'Advances in Large Eddy Simulation Methodology for Complex Flows,' Int. J. Heat and Fluid Flow, Vol. 23, pp. 710-720 https://doi.org/10.1016/S0142-727X(02)00167-4
  2. Germano, M., Piomelli, U., Moin, P. and Cabot, W., 1991, 'A Dynamic Subgrid-Scale Eddy Viscosity Model,' Phys. Fluids A, vol. 3, pp. 1760-1765 https://doi.org/10.1063/1.857955
  3. Moin, P., Squires, K., Cabot, W., Lee, S., 1991, 'A Dynamic Subgrid Scale Model for Compressible Turbulence and Scalar Transport,' Phys. Fluids A, Vol. 3, pp. 2746-2757 https://doi.org/10.1063/1.858164
  4. Nicoud, F., Baggett, J. S., Moin, P., Cabot, W., 2001, 'Large Eddy Simulation Wall Modeling Based on Sub optimal Control Theory and Linear Stochastic Estimation,' Phys. Fluids, Vol. 13, pp. 2968-2984 https://doi.org/10.1063/1.1389286
  5. Hughes, T. J. R., Mazzei, L., Oberai, A. A. and Wray, A. A., 2002, 'The Multiscale Formulation of Large Eddy Simulation: Decay of Homogeneous Isotropic Turbulence,' Phys. Fluids, Vol. 13, pp. 505-512 https://doi.org/10.1063/1.1332391
  6. Dubois, T., Jauberteau, F. and Zhou, Y., 1997, 'Influences of Subgrid Scale Dynamics on Resolvable Scale Statistics in Large-Eddy Simulations, https://doi.org/10.1016/S0167-2789(96)00191-1
  7. Domaradzki, J. A. and Loh, K. C., 1999, 'The Subgrid-Scale Estimation Model in the Physical Space Respresentation,' Phys. Fluids, Vol. 11, pp. 2330-2342 https://doi.org/10.1063/1.870095
  8. Ghosal, S., 1996, 'An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence,' J. Comput. Phys., Vol. 125, pp. 187-206 https://doi.org/10.1006/jcph.1996.0088
  9. Vreman, B., Geurts, B., Kuerten, H., 1996, 'Comparison of Numerical Schemes in Large-Eddy Simulation of the Temporal Mixing Layer,' Int. J. Numer. met. Fluids, Vol. 22, pp. 297-311 https://doi.org/10.1002/(SICI)1097-0363(19960229)22:4<297::AID-FLD361>3.0.CO;2-X
  10. Jiang, G. S. and Shu, C. W., 1996, Efficient Implementation of Weighted ENO Schemes,' J. Comput. Phys., Vol. 126, pp. 202-228 https://doi.org/10.1006/jcph.1996.0130
  11. Zhong, X., 1998, 'High-Order Finite-Difference Schemes for Numerical Simulation of Hypersonic Boundary-Layer Transition,' J. Comput. Phys., Vol. 144, pp. 662-709 https://doi.org/10.1006/jcph.1998.6010
  12. Tolstykh, A. I. and Lipavskii, M. V., 1998. 'On Performance of Methods with Third- and Fifth-Order Compact Upwind Differencing,' J. Comput. Phys., Vol. 140, pp. 205-232 https://doi.org/10.1006/jcph.1998.5887
  13. Adams, N. A. and Shariff, K., 1996, 'A High Resolution Hybrid Compact-ENO Scheme for Shock Turbulence Interaction Problems,' J. Comput. Phys., Vol. 127, pp. 27-51 https://doi.org/10.1006/jcph.1996.0156
  14. Pirozzoli, S., 2002, 'Conservative Hybrid Compact-WENO Schemes for Shock-Turbulence Interaction,' J. Comput. Phys., Vol. 178, pp. 81-117 https://doi.org/10.1006/jcph.2002.7021
  15. Wang, Z. and Huang, G. P., 2002, 'An Essentially Nonoscillatory High-Order Pade-type(ENO-Pade) Scheme,' J. Comput. Phys., Vol. 177, pp. 37-58 https://doi.org/10.1006/jcph.2002.6998
  16. Mittal, R. & Moin, P., 1997, 'Suitability of Upwind-Biased Finite-Difference Schemes for Large-Eddy Simulation of Turbulent Flows,' AIAA Journal, Vol. 35, pp. 1415-1417 https://doi.org/10.2514/2.253
  17. Kravchenko, A. G. and Moin, P., 1997, 'On the Effect of Numerical Errors in Large-Eddy Simulations of Turbulent Flows,' J. Comput. Phys., Vol. 131, pp. 310-322 https://doi.org/10.1006/jcph.1996.5597
  18. Beaudan, P. and Moin, P., 1994, 'Numerical Experiments on the Flow past a Circular Cylinder at a Sub-Critical Reynolds Number,' Report No. TF-62, Department of mechanical Engineering, Stanford Univ.
  19. Rai, M. M. and Moin, P., 1991, 'Direct Simulations of Turbulent Flow Using Finite-Difference Schemes,' J. Comput. Phys., Vol. 96, pp. 15-53 https://doi.org/10.1016/0021-9991(91)90264-L
  20. Rai, M. M. and Moin, P., 1993, 'Direct Numerical Simulation of Transition and Turbulence in a Spatially Evolving Boundary Layer,' J. Comput. Phys., Vol. 109, pp. 169-192 https://doi.org/10.1006/jcph.1993.1210
  21. Breuer, M., 1998, 'Numerical and Modeling Influences on Large Eddy Simulations for the Flow Past a Circular Cylinder,' Int. J. Heat and Fluid Flow, Vol. 19, pp.512-521 https://doi.org/10.1016/S0142-727X(98)10015-2
  22. Garnier, E., Mossi, M., Sagaut, P., Comte, P. and Deville, M., 1999, 'On the Use of Shock-Capturing Schemes for Large-Eddy Simulation, J. Comput. Phys., Vol. 153, pp. 273-311 https://doi.org/10.1006/jcph.1999.6268
  23. Mossi, M and Sagaut, P., 2003, 'Numerical Investigation of Fully Developed Channel Flow Using Shock-Capturing Schemes,' Computers & Fluids, Vol. 32, pp. 249-274 https://doi.org/10.1016/S0045-7930(02)00003-8
  24. Ladeinde, F., Cai, X., Visbal, M and Gaitonde, D. V., 2001, 'Turbulence Spectra Characteristics of High Order Schemes for Direct and Large Eddy Simulation,' Appl. Numer. Math., Vol. 36, pp. 447-474 https://doi.org/10.1016/S0168-9274(00)00019-2
  25. Meinke, M., Schroder, W., Krause, E. and Rister, Th., 2002, 'A Comparison of Second- and Sixth-order Methods for Large-Eddy Simulations,' Computers & Fluids, Vol. 31, pp. 695-718 https://doi.org/10.1016/S0045-7930(01)00073-1
  26. Zang, T. A., 1991, 'On the Rotation and Skew-Symmetric Forms for Incompressible Flow Simulations,' Appl. Numer. Math., Vol. 7, pp. 27-40 https://doi.org/10.1016/0168-9274(91)90102-6
  27. Blaisdell, G. A., Spyropoulus, E. T. and Qin, J. H., 1996, 'The Effect of the Formulation of Nonlinear Terms on Aliasing Errors in Spectral Methods,' Appl. Numer. Math., Vol. 21, pp. 207-219 https://doi.org/10.1016/0168-9274(96)00005-0
  28. Fedoiun, I., Lardjane, N. and Gokalp, I., 2001, 'Revisiting Numerical Errors in Direct and Large Eddy Simulations of Turbulence: Physical and Spectral Space Analysis,' J. Comput. Phys., Vol. 174, pp.816-851 https://doi.org/10.1006/jcph.2001.6939
  29. Lilly, D, 1992, 'A Proposed Modification of the Germano Subgrid Scale Closure Method,' Phys. Fluids A, Vol.4, pp. 633-634 https://doi.org/10.1063/1.858280
  30. Lele, S. K., 1992, 'Compact Finite-Difference Schemes With Spectral-Like Resolution,' J. Comput. Phys., Vol. 103, pp. 16-42 https://doi.org/10.1016/0021-9991(92)90324-R
  31. Kim. D., 2001, Numerical Study on Dynamics and Control of Flow over a Sphere up to $Re=10^4$, Ph. D. thesis, Seoul National University
  32. Min, T., Yoo, J. Y. and Choi, H., 2000 'Effect of Spatial Discretization Schemes on Numerical Solutions of Viscoelastic Fluid Flows,' KSME Journal B, Vol. 24 (9), pp. 1227-1238
  33. Min, T., Yoo, J. Y. and Choi, H., 2001, 'Effect of Spatial Discretization Schemes on Numerical Solutions of Viscoelastic Fluid Flows,' J. Non-Newtonian Fluid Mech., Vol. 100, pp. 27-47 https://doi.org/10.1016/S0377-0257(01)00128-8
  34. Anderson, W., Thomas, J., Van Leer, B., 1986, 'Comparison of Finite Volume Flux Vector Splitting for the Euler Equations,' AIAA Journal, Vol. 24, pp. 1453-1460 https://doi.org/10.2514/3.9465
  35. Beam, R. M. and Warming, R. F. 1978, 'An Implicit Factored Scheme for the Compressible Navier-Stokes Equations,' AIAA Journal, Vol. 16, pp. 393-402 https://doi.org/10.2514/3.60901
  36. Ekaterinaris, J. A., 1999, 'Implicit, High-Resolution, Compact Schemes for Gas Dynamics and Aeroacoustics,' J. Comput. Phys., Vol. 156, pp. 272-299 https://doi.org/10.1006/jcph.1999.6360
  37. Park, N. and Yoo, J. Y., 2000, 'A New Implicit Implementation of Compact Difference Scheme for the Direct Simulation of Compressible Flows,' Bulletin of the American Physical Society, Vol. 45, No. 9, pp. 38-39
  38. Jin, B. J., Park, N. and Yoo, J. Y., 2001, 'Large Eddy Simulation of Boundary Layer Transition on the Axial Turbine Blade by Rotor Induced Wake,' FEDSM2001 -18195, Proceedings of 2001 ASME Fluids Engineering Division Summer Meeting, May 29 June 1, 2001, New Orleans, L.A., USA
  39. Pulliam, T. H. and Chaussee, D. S., 1981, 'A Diagonal Form of an Implicit ApproximateFactorization Algorithm,' J. Comput. Phys., Vol. 39, pp. 347-363 https://doi.org/10.1016/0021-9991(81)90156-X
  40. Visbal, M. R. and Gaitonde, D. A., 1999, 'High-Order-Accurate Methods for Complex Unsteady Subsonic Flows,' AIAA Journal, Vol 37, pp. 1231-1239 https://doi.org/10.2514/2.591
  41. Gaitonde, D. V. and Visbal, M. R., 2000, 'Padetype Higher-Order Boundary Filters for the Navier-Stokes Equations,' AIAA Journal, Vol. 38, pp. 2103-2112 https://doi.org/10.2514/2.872
  42. Coleman, G. N., Kim, J. and Moser, R. D., 1995, 'A Numerical Study of Turbulent Supersonic Isothermal-Wall Channel Flow,' J. Fluid Mech., Vol. 305, pp. 159-183 https://doi.org/10.1017/S0022112095004587
  43. Wei, T. and Willmarth, W. W., 1989, 'Reynolds-Number Effects on the Structure of a Turbulent Channel Flow,' J. Fluid Mech., Vol. 204, pp. 57-95 https://doi.org/10.1017/S0022112089001667
  44. J. Jeong and F. Hussain, 1995, 'On the Identification of a Vortex,' J. Fluid Mech., Vol. 285, pp. 69-94 https://doi.org/10.1017/S0022112095000462
  45. Kravchenko, G. and Moin, P., 2000, 'Numerical Studies of Flow over a Circular Cylinder at $Re_D=3900$,' Phys. Fluids, vol. 12, pp. 403-417 https://doi.org/10.1063/1.870318
  46. Hahn, S. and CHoi, H., 1997, 'Unsteady Simulation of Jets in a Cross Flow,' J. Comput. Phys., Vol. 134, pp 342-356 https://doi.org/10.1006/jcph.1997.5712
  47. Ong, L. and Wallace, J., 1996, 'The Velocity Field of the Turbulent Very Near Wake of a Circular Cylinder,' Exp. Fluids, Vol. 20, pp. 441-453 https://doi.org/10.1007/BF00189383
  48. Lourenco, L. M. & Shih, C., 1993, 'Characteristics of the Plane Tubulent Near Wake of a Circular Cylinder. A, Particle Image Velocimetry study,' Phys. Fluids., Vol. 12, pp. 403-407 https://doi.org/10.1063/1.870318
  49. Norberg, C., 1987, 'Effects of Reynolds Number and Low-Intensity Free-Stream Turbulence on the Flow around a Circular Cylinder,' 'Publ. No. 87/2. Department of Applied Thermosc. And Fluid Mech., Chalmer University of Technology, Gothenburg, Sweden
  50. Choi, H. and Moin, P., 1990, 'On the Space-Time Characteristics of Wall-Pressure Fluctuations,' Phys. Fluid A, Vol. 2, pp. 1450-1460 https://doi.org/10.1063/1.857593
  51. Park, N., Yoo, J. Y. and Choi, H., 2003 'On the Suitability of Centered and Upwind-biased Compact Different Schemes for Large Eddy Simulation: Part II-Static Error Analysis,' Trans. Of the KSME B, Vol. 27, No. 7, pp. 984-994 https://doi.org/10.3795/KSME-B.2003.27.7.984
  52. Park, N., Yoo, J. Y. and Choi, H., 2003, 'On the Suitability of Centered and Upwind-biased Compact Different Schemes for Large Eddy Simulation: Part III-Dynamic Error Analysis,' Trans. Of the KSME B, Vol. Vol. 27, No. 7, pp. 995-1006 https://doi.org/10.3795/KSME-B.2003.27.7.995