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ABSTRACT

This paper describes the numerical solution to the hyperbolic system of magnetohydrodynamic (MHD) equations.
First, by pointing out the approximations involved, the deal MHD equations are presented. Next, the MHD waves as
well as the associated shocks and discontinuities, are presented. Then, based on the hyperbolicity of the ideal MHD
equations, the application of upwind schemes, which have been developed for hydrodynamics, is discussed to solve
the equations numerically. As an definite example, one and multi-dimensional codes based on the Total Variation
Diminishing scheme are presented. The treatment in the multi-dimensional code, which maintains V - B = 0, is
described. Through tests, the robustness of the upwind schemes for MHDs is demonstrated.
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I. Introduction

Computational astrophysics has been drived not
only by dramatic advances in computer hardwares, but
also by comparable developments in improved algo-
rithms. Recent progresses in methods to solve the equa-
tions of compressible magnetohydrodynamics (MHDs)
are particularly important. It is not only because that
system is the most applicable to describe a vast array of
central astrophysical problems, but also because MHDs
presents a special challenge due to the complexity by
three non-isotropically propagating wave families with
wide ranging relative characteristic speeds.

Conservative, Riemann-solver-based schemes, which
are inherently upwind, have proven to be very effec-
tive for solving MHD equations as well as hydrody-
namic equations. The upwind schemes share an ability
to sharply and cleanly define fluid discontinuities, espe-
cially shocks, and exhibit a robustness that makes them
broadly applicable. These schemes conservatively up-
date the zone-averaged or grid-centered fluid and mag-
netic field states based on estimated advective fluxes of
mass, momentum, energy and magnetic field at grid in-
terfaces using solutions to the Riemann problem at each
interface. MHD examples include Brio & Wu (1988),
Zachary & Colella (1992), Zachary, et al. (1994), Dai
& Woodward (1994a,1994b), Powell (1994), Powell et
al. (1995), Ryu & Jones (1995), Ryu, et al. (1995), Roe
& Balsara (1996), Balsara (1998), Téth (1997), Kim et
al. (1999), and Jiang & Wu (1999). Brio & Wu applied
the Roe’s approach to the MHD equations. Zachary
and collaborators used the BCT scheme to estimate
fluxes, while Dai & Woodward applied the PPM scheme
to MHDs. Powell and collaborators developed a Roe-
type Riemann solver with an eight-wave structure for
MHDs. Ryu and collaborators extended the Harten’s
TVD scheme to MHDs. Balsara and Téth used also a
TVD scheme to build an MHD code. Kim and collab-
orators built a code for the MHD equations with the
isothermal equation of state based on a TVD scheme.

Jiang & Wu applied an ENO scheme to MHDs.

The feature of upwind schemes that grid-centered
quantities are used to estimate fluxes at grid interfaces
makes enforcing V - B = 0 non-trivial. As the result,
the explicit divergence-cleaning scheme, which restricts
the choice of boundary conditions, has been used at
first (see e.g., Ryu, et al. 1995). However, recently
Dai & Woodward (1998), Ryu et al. (1998), Balsara &
Spicer (1999), and Londrillo & Del Zanna (2000) suc-
ceeded in incorporating the staggered mesh technique
in upwind schemes, which assures V- B = 0.

II. Ideal Magnetohydrodynamics
(a) Equations

MHDs describes the behavior of the combined sys-
tem of a conducting fluid and magnetic fields in the
limit that the displacement current and the separation
between ions and electrons are neglected. So, the MHD
equations represent coupling of the equations of fluid
dynamics with the Maxwell’s equations of electrody-
namics. When the effects of electrical resistivity, vis-
cosity, and thermal conductivity are dropped, the fol-
lowing ideal MHD equations are obtained,

dp B
a—’U—i—’U~VU+1Vp~l(V><B)><B:O, (2)
ot p p

Ip
E+U~Vp+7pV~v:0, (3)
68—?~—VX(UXB>=O. (4)

Here, we have chosen units so that factor of 47 does
not appear in the equations. An additional explicit
constraint V- B = 0 is imposed to account for the
absence of magnetic monopoles.
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(b) Waves

While disturbances in a neural gas are propagated by
sound waves, a magnetized and electrically conducting
medium can support more than one kinds waves. In
order to study them, let us take the unperturbed state
of the medium to be static and homogeneous:

po = const., U, =0, p,=const., B, =const, (5)
and consider small perturbations of this system:
p=po+dp, V=6V, p=p,+p, B,=DB,+iB.

(6)

We can look for normal mode solutions having the fol-
lowing form for the perturbed quantities:

0Q x gilwt—kz) (7
By substituting Eq. (5)-(7) in the MHD equations and

linearizing for the perturbed quantities, the dispersion
relation is obtained:

ww? — )W = )W — ) =0, (8)
where
B? '
Ca = 4] —= (9)
a p ,
r 1%
1|, B? . B2\’ B2
cg=|z4qa6 +—+ <+ —4a
2 p p
(10)
' 1 B? B2\?® B2\
= |3 a2+————\/<a2+ > — 402 =2
2 p p p
(11)

are the speeds of Alfvén, fast, and slow waves respec-
tively. Here, a is the speed of sound wave given by

o= \/g (12)

The Alfvén wave is a transverse wave with 0p = 0 (that
is, incompressible). On the other hand, the fast and
slow waves have dp # 0 (that is, compressible) as the
sound wave in hydrodynamics. The wave speeds have
the following order

Cf > Cq > Cs. (13)

(c) Shocks and Ij.‘is.continuities

Since MHD flows have three kinds of waves, we ex-
pect several shocks and discontinuities. Shocks and dis-
continuities are described by the following jump condi-
tions, which are derived from the conservative form of
the MHD equations (see the next section):

[pvz] =0, (14)

[pvi—i—p + %Bﬁ - %Bi} =0, (15)

[pvev) — B.By] =0, (16)

[(%pzﬂ s B?) vy — (B - v) Bz] —0, (17)
[B:] =0, (18)

[v.B) — Bsv)] =0, (19)

where shocks and discontinuities are assumed to prop-
agate along the z-direction and the subscript || denotes
the direction perpendicular to the propagation.

Each of the three MHD waves as well as the entropy
mode (represented by w in the dispersion relation, Eq.
8) has a nonlinear counterpart. The fast wave is asso-
ciated with the fast shock which has across the shock
the characteristics of

B, = continuous, |Bj |p

ostshock preshock ?

in addition to those of hydrodynamic shocks. The slow
wave is associated with the slow shock which has
<|By|

B, = continuous, |B)| (21)

postshock preshock ’

The counterpart of the Alfvén wave is the rotational
discontinuity, where all MHD quantities are continu-
ous expect the direction of Bj. The counterpart of
the entropy mode is the contact discontinuity, as in hy-
drodynamics, where where all quantities are continuous
except density.

III. A Magnetohydrodynamic Code

(a) MHyperbolic Equations

In Cartesian geometry, the ideal MHD equations are
written in conservative form as

oq N oF, N oF, N OF,
ot ox Oy 0z

=0, (22)

P

g=| 4" (23)

, Pz
pvi + p* — B2

pUzVy — BBy
z B Bz
Fw — PUzV 0 z
Byv; — Bzuy
B.,v, — Bgv.

(E + p*)vz — By(Bzuy + Byvy + B.v.) ’
(24)
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with Fy and F’, obtained by properly permuting in-
dices. The total pressure and the total energy are given
by

“ 1
P =p+§(B§+B§+Bf)) (25)

1 P 1
E:ip(vi—i-vz-f-vz)+m+§(B§+B§+B§)'
(26)

With the state vector, g, and the flux functions, F,(q),
F,(q), and F,(q), the Jacobian matrices, A,(q) =
oF,/dq, A,(q) = OF,/oq, and A.(q) = OF./dq,
are formed. The system of equations is called hyperbolic
if all the eigenvalues of the Jacobian matrices are real
and distinct and the corresponding set of right eigen-
vectors is complete. The MHD equations form a non-
strictly hyperbolic system, meaning that some eigenval-
ues may coincide at some points (see e.g., Brio & Wu
1998).

Any scheme to solve a set of hyperbolic equations
can be utilized to build an MHD code Here, as an il-
lustration, a code based on the Harten’s Total Varia-
tion Diminishing (TVD) scheme (Harten 1983), which
is a second-order-accurate extension of the Roe-type
upwind scheme (Roe 1981), is described.

(b) A One-Dimensional Code

_ The procedure to build a one-dimensional MHD

code based on the TVD scheme is described in detail in
Ryu & Jones (1995). Here, it is briefly summarized. To
start, we consider a plane-symmetric, one-dimensional
flow exhibiting variation along the z-direction. The
first step to build the code is to find the eigenvalues
and the right and left eigenvectors of the Jacobian ma-
trix, A,(q). The seven eigenvalues a,,---,a7 in non-
increasing order are

a7 = Vg ECy, Q26 =VptcCa, A35 =UpECs, Ay = Uy

(27)
The quantities a1, -, a7 represent the seven charac-
teristic speeds with which information is propagated
locally by three MHD wave families and an entropy
mode. The corresponding eigenvectors are given, for
example, in Ryu & Jones (1995).

In a code based on the TVD scheme, the physical
quantities are referred to the grid centers while the
fluxes are computed on the grid interfaces. Implemen-
tation of Roe’s linearization technique would result.in
a particular averaged form of the physical quantities on
the grid interfaces (Roe 1981). But it is not possible
to derive this particular analytic form of the averaged
quantities in MHD for general cases with an adiabatic
index v # 2. Instead, we modify Roe’s scheme and
use Pitls Vpipds Vyird, Uzitds By,i+%? Bz,i+%7 p;+%
on the grid interfaces with the arithmetic averages at i
and ¢ + 1. Then, other quantities like momentum, gas
pressure, total energy, etc are calculated by combining
those quantities.

The state vector g™ at the time step n is updated by
calculating the modified flux f; at the grid interfaces
as follows:

N .
qu;n. = q;n - E(fz,l+% - fz,i—%)' (28)

The procedure to compute it is described in details in
Ryu & Jones (1995). The time step At" is restricted
by the usual Courant condition for the stability, At™ =
CcourAm/Max(|v;l,i+%| + c?)i+%) with Cour < 1.

(¢) Multi-Dimensional Extension

The multi-dimensional extension can done through
a Strang-type directional splitting (Ryu et al. 1995). In
each time step, multi-dimensional derivatives are split
into a set of one-dimensional derivatives, with varia-
tions in other directions ignored temporarily. Then,
each row in the grid is treated as if it were a one-
dimensional problem. Updating the flow quantities
along each row is done using the one-dimensional code
described in the previous subsection. The parallel (to
the direction of the row) component of magnetic field
is kept constant and only the perpendicular component
is updated. One complete time step updating the full
state vector @™ to g™t in each grid cell is composed
of updating it along two or three directions, as appro-
priate. For instance, in three-dimensional Cartesian
geometry, the state vector is updated along z, ¥, and
z-directions, so

q""' =L.L,L.q" (29)

In order to maintain second-order accuracy, the or-
der of directional passes is permuted by the Strang-
type prescription: L, LyL,, L, L,L,, L;L,L,, L,L,L,,
LyL.L.,and then L,L.L,, for example. The time step
is restricted to satisfy the Courant condition along each
row in three directions. It is calculated at the start of
the above permuting sequence and used through one
complete sequence.

(d Vv -B=0

The staggered mesh technique can be incorporated
to ensure V- B = 0. We describe the magnetic field
update step in two-dimensional plane-parallel geome-
try (Ryu et al. 1998). Extensions to three-dimension
and other geometries are trivial. Here, we define the
magnetic field components on grid interfaces, b ; ; and
by.: i, while all the other fluid quantities are still de-
fined at grid centers. For use in the step of calculating
the advective fluxes by the TVD scheme, the magnetic
field components at grid centers, which are intermedi-
ate variables, are interpolated as

1
B,,;= 3 (bz,ij +bziz1j), (30)

and 1
Byij = 5 (by,ij +byij-1). (31)
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Fig. 1.— Two-dimensional MHD shock tube test.

Since the MHD code based on the TVD scheme has
second-order accuracy, the above second-order inter-
polation should be adequate. If non-uniform grids
are used, an appropriate interpolation of second-order
should be used.

Using the modified fluxes at grid interfaces (§I1Lb),
the advective fluxes, or the z-component of the electric
field, on grid edges are calculated by a simple arith-
metic average, which still keeps second-order accuracy:
namely, '

1, = _ 1 - ~
Q5 = 2 (Fyit1,; + foig) = 5 (foiger + faig) - (32)

Then, the magnetic field components are updated as

AR

by = by — oy (Ui~ Qeser) (39)
and

. AR

bl =0+ A (R~ Qimng) . (34)

Note that the € terms include information from all
seven characteristic modes. It is also clear that the
net magnetic flux across grid interfaces is exactly kept
to be zero at thestepn+1

%B’"H -dS =
S

n+l _ pntl
(bz,i,j bz,i—l,j

(35)

YAy + (B —5ntL Az =0,

Y.,

if it is zero at the step n.

IV. Numerical Tests

In all the tests shown, we used the adiabatic index
v = 5/3 and a Courant constant Ceour = 0.8.

(a) Shock Tube Problems

We have tested the code with an MHD shock tube
problem placed diagonally on a two-dimensional plane-
parallel grid. The correctness and accuracy are demon-
strated through the comparison of the numerical so-
lution with the exact analytic solution from the non-
linear Riemann solver described in Ryu & Jones (1995).
The calculation has been done in a box of z = [0,1] and
y = [0,1], where structures propagate along the diag-
onal line joining (0,0) and (1,1). The initial left state
is (p, Vjis Vi Uz, BJ_, BZ, E) = (1.08, 1.2, 0.01, 0.5,
3.6/V/4rw, 2//4m, 0.95) and the initial right state is (1,
0,0, 0, 4/\/4x, 2/V/4m, 1), with B = 2//4r. Fig. 1
shows the result. The calculation has used 256 x 256
cells, and plots correspond to time ¢t = 0.2v2. The
numerical solution is marked with dots, and the exact
analytic solution is drawn with lines. The plotted quan-
tities are density, gas pressure, total energy, v (velocity
parallel to the diagonal line; i.e., parallel to the wave
normal), v, (velocity perpendicular to the diagonal line
but still in the computational plane), v, (velocity in
the direction out of plane), and the analogous mag-
netic field components, B), B1, and B,. Fast shocks,
rotational discontinuities, and slow shocks propagate
from each side of the contact discontinuity, all of which



MHD CODE BASICS S213

Fig. 2.— A light MHD cylindrical jet. White represents
high values and black represents low values.

are correctly reproduced.

(b) Jets

We illustrate the simulation of a light cylindrical
MHD jet with a top-hat velocity profile. The jet en-
ters a cylindrical box of r = [0,1] and z = [0,6.64]
at z = 0. The grid of the box is uniform with
256 x 1700 cells and the jet has a radius, r;e¢, of 30 cells.
The ambient medium has sound speed aumpsens = 1
and poloidal magnetic field (By = B, = 0, B, =
Bampient) with magnetic pressure 1% of gas pressure
(plasma Bgmpient = 100). The jet has Mach num-
ber Mjet = Ujet/Gambient = 20, gas density contrast
Pjet/Pambient = 0.1, and gas pressure in equilibrium
with that of the ambient medium. It carrtes a helical
magnetic field with B, = 0, By = 2 X Bambient (T/Tjet ),
and B, = Bumpient-

Fig. 2 shows the images of the log of the gas den-
sity and total magnetic field pressure at five different
epochs, t = 0.3, 0.8, 1.3 1.8, and 2.2. The figure ex-
hibits the complexity and unsteadiness of the flows.
The most noticeable structures are the bow shock of
the ambient medium and the terminal shock of the jet
material. In addition, the jet material expands and

then refocuses alternately as it flows and creates sev-
eral internal oblique shock. The terminal and oblique
shocks are neither steady nor stationary structures.
The oblique shocks interact episodically with the ter-
minal shock, resulting in disruption and reformation
of the terminal shocks. The terminal shock includes
a Mach stem, so that the jet material near the out-
side of the jet exits through the oblique portion of the
shock. That material carries vorticity and forms a co-
coon around the jet. The vorticity is further developed
into complicated turbulent flows in the jet boundary
layer, which is subject to the Kelvin-Helmholtz insta-
bility. There are distinct episodes of strong vortex shed-
ding which coincide with disruption and reformation of
the terminal shock. Its remnants are visible as rolls in
the figure.
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