• 제목/요약/키워드: Numerical parameter

검색결과 2,344건 처리시간 0.031초

Rate-sensitive analysis of framed structures Part I: model formulation and verification

  • Izzuddin, B.A.;Fang, Q.
    • Structural Engineering and Mechanics
    • /
    • 제5권3호
    • /
    • pp.221-237
    • /
    • 1997
  • This paper presents a new uniaxial material model for rate-sensitive analysis addressing both the transient and steady-state responses. The new model adopts visco-plastic theory for the rate-sensitive response, and employs a three-parameter representation of the overstress as a function of the strain-rate. The third parameter is introduced in the new model to control its transient response characteristics, and to provide flexibility in fitting test data on the variation of overstress with strain-rate. Since the governing visco-plastic differential equation cannot be integrated analytically due to its inherent nonlinearity, a new single-step numerical integration procedure is proposed, which leads to high levels of accuracy almost independent of the size of the integration time-step. The new model is implemented within the nonlinear analysis program ADAPTIC, which is used to provide several verification examples and comparison with other experimental and numerical results. The companion paper extends the three-parameter model to trilinear static stress-strain relationships for steel and concrete, and presents application examples of the proposed models.

화력 발전용 발전기 고정자 프레임의 모드매개변수 규명 (Modal Parameter Identification of a Generator Stator Frame for Fossil Power Plants)

  • 김철홍;류석주;박종포
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.570-576
    • /
    • 1999
  • This paper presents numerical and experimental results of modal parameter identification in a generator stator frame for 500 MW fossil power plants. A commercial finite element analysis S/W was employed for modal analysis. The generator is excited by alternating electromagnetic forces, mainly of 120 Hz in 60 Hz machines, due to magnetic field and electric current in windings. It is necessary to verify that the stator frame has adequate frequency margin from the excitation frequency to avoid possible resonance when operating. Thus, frequency margin required for the stator frame is established using the numerical and experimental results. The results show that the stator frame meets the frequency-margin requirements. Also, results of modal analysis for design modification in order to reduce weights of the stator frame without deteriorating vibration characteristics are presented.

  • PDF

시로코팬 블레이드의 소음특성연구 (A study for noise properties of Sirroco fan blades)

  • 최한림;곽지호;송기선;이덕주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.257-263
    • /
    • 2001
  • The purpose of this study is to find the amount of contributions of each Sirroco fan parameter to noise and performance using experimental and numerical approaches. We made several fans and structures related to fan housing and fan for parameter study like inlet blade angle, outlet blade angle, inlet diameter, outlet diameter, blade shape. etc.. Numerical analysis was performed using commercial code (FANNOISE) for the part not to be possible to do experiment. Using these parameter study, We have found the way to reduce noise and improve performance of fan and had some useful data for designing low noise and high performance fan.

  • PDF

A Simulation Study on Regularization Method for Generating Non-Destructive Depth Profiles from Angle-Resolved XPS Data

  • Ro, Chul-Un
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.707-714
    • /
    • 1995
  • Two types of regularization method (singular system and HMP approaches) for generating depth-concentration profiles from angle-resolved XPS data were evaluated. Both approaches showed qualitatively similar results although they employed different numerical algorithms. The application of the regularization method to simulated data demonstrates its excellent utility for the complex depth profile system. It includes the stable restoration of the depth-concentration profiles from the data with considerable random error and the self choice of smoothing parameter that is imperative for the successful application of the regularization method. The self choice of smoothing parameter is based on generalized cross-validation method which lets the data themselves choose the optimal value of the parameter.

  • PDF

최적화기법에 의한 베어링 동특성 계수의 규명 (Identification of Bearing Dynamic Coefficients Using Optimization Techniques)

  • 김용한;양보석;안영공;김영찬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.520-525
    • /
    • 2003
  • The determination of unknown parameters in rotating machinery is a difficult task and optimization techniques represent an alternative technique for parameter identification. The Simulated Annealing(SA) and Genetic Algorithm(GA) are powerful global optimization algorithm. This paper proposes new hybrid algorithm which combined GA with SA and local search algorithm for the purpose of parameter identification. Numerical examples are also presented to verify the efficiency of proposed algorithm. And, this paper presents the general methodology based on hybrid algorithm to identify unknown bearing parameters of flexible rotors using measured unbalance responses. Numerical examples are used to ilustrate the methodology used, which is then validated experimentally.

  • PDF

AISI-4340 변형률 속도 변화에 따른 인장, 압축형 JC 구성방정식 변수에 관한 연구 (Experimental Studies on Tension, Compression JC Constitutive Equation Parameter of Strain Rate Effect for AISI-4340)

  • 우상현;이창수;박이주
    • 한국군사과학기술학회지
    • /
    • 제20권4호
    • /
    • pp.520-527
    • /
    • 2017
  • In this study, the experimental methods are compared for obtaining the parameters of the Johnson-Cook constitutive model. The parameters used for numerical simulation are very important in making an accurate estimation of numerical simulation. So, the testing method of obtaining the parameters is also very important. We compared the difference of conventional method, compression method and tensile method of AISI-4340 steel at various strain rate by using MTS, SHPB and SHTB. Taylor impact test and M&S were carried out to compare differences among these three types of JC constitutive parameter.

The strongest control of thermophoresis coefficient on nanoparticle profile at intermediate gaps: A spinning sphere

  • Sharif, Humaira;Naeem, Muhammad Nawaz;Khadimallah, Mohamed A.;Ayed, Hamdi;Hussain, Muzamal;Alshoaibi, Adil
    • Computers and Concrete
    • /
    • 제29권3호
    • /
    • pp.201-207
    • /
    • 2022
  • The evaluation of velocity profile for large values of buoyancy parameter and Bioconvected Rayleigh number is examined. The non-linear problem has been tackled numerically by shooting technique. Nanofluid temperature and nanoparticle concentration slightly elevates for increasing values of thermophoresis coefficient. Thickness of thermal boundary layer is significantly increased with thermophoresis coefficient whereas thickness of concentration boundary layer is more slightly enhanced. The response of temperature and nanoparticles concentration is observed due to change in Brownian motion parameter. As Brownian motion parameter increased temperature distribution is slightly enhanced. The reverse behavior is observed in case of nanoparticles concentration. Comparison of numerical technique with the extant literature is made and an acceptable agreement is attained.

Thermal-magneto-mechanical stability analysis of single-walled carbon nanotube conveying pulsating viscous fluid

  • R. Selvamani;M. Mahaveer Sree Jayan;Marin Marin
    • Coupled systems mechanics
    • /
    • 제12권1호
    • /
    • pp.21-40
    • /
    • 2023
  • In thisstudy, the vibration problem ofthermo elastic carbon nanotubes conveying pulsating viscous nano fluid subjected to a longitudinal magnetic field is investigated via Euler-Bernoulli beam model. The controlling partial differential equation of motion is arrived by adopting Eringen's non local theory. The instability domain and pulsation frequency of the CNT is obtained through the Galerkin's method. The numerical evaluation of thisstudy is devised by Haar wavelet method (HWM). Then, the proposed model is validated by analyzing the critical buckling load computed in presentstudy with the literature. Finally, the numerical calculation ofsystem parameters are shown as dispersion graphs and tables over non local parameter, magnetic flux, temperature difference, Knudsen number and viscous parameter.

전달함수 다중합성법을 이용한 진동시스템의 결합부 특성값 동정 (Identification of Dynamic Joint Characteristics Using a Multi-domain FRF- based Substructuring Method)

  • 이두호;황우석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.635-644
    • /
    • 2004
  • A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared f3r the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate far realistic problems.

  • PDF

전달함수 다중합성법을 이용한 진동시스템의 결합부 특성값 추정 (Identification of Dynamic Joint Characteristics Using a Multi-domain FRF-based Substructuring Method)

  • 황우석;이두호
    • 한국소음진동공학회논문집
    • /
    • 제14권6호
    • /
    • pp.536-545
    • /
    • 2004
  • A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared for the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, the stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate for realistic problems.