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Abstract : Two types of regularization method (singular system and HMP
approaches) for generating depth-concentration profiles fram angle-resolved XPS
data were evaluated. Both approaches showed qualitatively similar results
although they employed different numerical algorithms. The application of the
regularization method to simulated data demonstrates its excellent utility for the
complex depth profile system. It includes the stable restoration of the depth-
concentration profiles from the data with considerable random error and the self
choice of smoothing parameter that is imperative for the successful application of
the regularization mcthod. The self choice of smoothing parameter is based on
generalized cross-validation method which lets the data themselves choose the
optimal value of the parameter.
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sensitive, easily interpretable,

and non-destructive

Composition depth profiles of materials are
important in many areas of surface research, including
biomaterials, corrosion, microelectronics, catalysis, and

adhesion. X-ray photoelectron spectroscopy (XPS) is a

707

technique for measuring the concentration of elements at
the surface of materials. The XPS elemental composition
represents an exponentially attenuated convolution of the
actual composition depth profile of the sampled region.
In angle-resolved XPS (ARXPS), spectra are collected
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as the photoelectron take-off angle from the sample is
varied. Because the effective sampling depth decreases
with the increase of the sine of the take-off angle, it is
possible to extract information on the concentration
depth profile of the sample from ARXPS data. Spectra
collected at each angle still contain a convolution of the
entire depth profile, so thie data must be inverted to
generate an estimate of the depth profile[1-6]. The
schematic diagram for ARXPS measurement is shown in
Fig.1.

Several numerical methods have been applied to
fully utilize potentials of ARXPS technique[6]. Among
those, regularization method has shown its applicability
to more complex systems than simple overlay sample
systems[1,3]. In mathematics, various types of the
regularization method have been investigated. However,
results from mathcmatical studies have not been easily
implemented into ARXPS data analysis mainly due to
inherent physical constraints in the ARXPS experiment.
This study compares two types of the regularization
method (singular system and Hausdorff moment
problem (HMP) approaches) which chemists have
employed for ARXPS data analysis without full
understanding mathematical characteristics of the
methods. Also, this simulation study investigates the
effect of parameters used in the numerical methods to
recover the concentration depth profile from ARXPS
data. The parameters which were reported to have
considerable effect on the successful application of the
numerical methods include the number of data, sampling
schemes, the choice of smoothing parameter, and noise
contained in the data. It is emphasized that the
simulation study is essential because the major obstacle
in obtaining concentration depth profiles from ARXPS
data is located at the mathematical data treatment stage
and there are no available standard samples with
complex concentration depth profiles.

Measured intensity of the photoelectron flux at take-

off angle of On is given by Eq.1.

X-ray source detector
X-ray emitting
photoelectrons
vacuum take-of‘fangle(e)
material
depth (x) x / sin(0) : distance at which emitting

photoelectrons travel in material

Fig. 1. Schematic diagram for ARXPS measurement.
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where F'(On) is the absolute signal intensity of an
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element in a sample, K is the normalization parameter,
f(x") is the concentration depth profile of an element, x'
is the depth from the surface, A is the electron
attenuation length, and 6, is the angle between the
sample surface and the photoelectron trajectory used in
n-th measurement. With x = x'/A and p,, = 1/sin(@,), the
measured intensity of the photoelectron flux can be
represented as Laplace transform of the concentration
depth profiles (Eq.2).

F(p) = [f(x) exp(-x p,) dx 2
0

The inversion of ARXPS data to get the
concentration depth profile is one of mathematically
notorious 'ill-posed' problems. If standard numerical
inversion techniques are employed, the meaningful depth
profiles cannot be generated. With the aid of simulation
study, it is common that ARXPS data with 1% error
produce at least 1000% error in the recovered
concentration depth profiles. With considering the
ARXPS data usually contain up to 10% random error,
advanced numerical technique should be imperative to
utilize the advantage of the ARXPS technique.
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Regularization method has been used to invert
Laplace transform[3,6,7-10]. In the regularization
method, inversion is carried out for a Fredholm integral
equation of the second kind (Eq. 3) which has a stable
and unique minimum for values of smoothing parameter

which is not equal to zero.

P (| 10x) exp-x py) dx - Fpol ¥+ lifal® - (3)
0

where @(f(x)) is a Fredholm integral equation of the
sccond kind, p is the smoothing parameter, and f(x) is
the solution which minimizes @(f(x)). The smoothing
paramcter is introduced to reduce the unstability of the
solution of Eq.3 and provide an unique and meaningful
solution.

Singular svstem approach|[11-16] is one type of the
regularization method. It uses conceptually similar
mathematical treatment to singular value decomposition
method widely used in the matrix inversion. The singular
system of the Laplace transform is defined by ay. uy,
and v where ay is the k-th singular value, vy is the k-th
singular function, and vy is the k-th singular vector.
Using the singular system approach, the regularized

solution is given by

f 5 % 5 (F
u(\) = I\Zlamuk ng‘( (py) vi(n))

where N is the number of the data. Here, the solution,
fu(x). is represented as the lincar combination of exp(~x
pp) functions because uy is the lincar combination of
those functions. Since the solution s the lincar
combination of exponentially dccreasing functions, it
tends to approach to zero as the depth, X, increases to
the infinity.

HMP approach[6,17] converts Laplace transform
integral to matrix form after substituting varnable, x,

with expi-t).

1 N
F(p;) = ff(-ln(x)) " dt = Dowi P ()
0 i=1
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The regularized solution for the HMP approach is
f,(-In(x)) = AF(p} (AAT + p D"

where A is a matrix whose component, A;; , is given by

i
(w; [l.pj - 1), ATis a transpose of thc A matrix, and w; is
the weight for Gaussian quadrature formula[18].

In the regularization method, major problem is that
the smoothing parameter is an arbitrary parameter and
criteria must be developed to select a smoothing
parameter value which is Jarge enough to stabilize the
solution, and yet small enough so that real features are
not smoothed out of the solution. Generalized cross
validation (GCV) method proposed by Wahba[19-21] is
based on the idea of letting the data themselves choose
the value of the smoothing parameter. It 1s required that
a good value of the smoothing parameter should allow
the prediction of missing data values. No a priori
information about the solution and/or the random error
included in the data is required. In the GCV method, the
optimal smoothing parameter value is obtained by

minimizing GCV function, V(p).

vy = NI AGO]F(p) 112 .
I Te(1 - Aq |

where A(p) = AAT(AAT + u)-1, Trfl - A() ] is the
trace of the [I - A(u)] matrix, N is the number of the
data, and I is an identity matrix.

All the calculations were performed using IBM PC
compatible 486 computer and it usually took a few
minutes to get the solution from the simulated data. The
program was written in C language using Microsoft

QuickC for Windows compiler.

2. Results and Discussion

The application of numerical methods to obtain f(x)
of Laplace transform using the data was reported to be
dependent on several factors such as mathematical
formulations, the number of the data, sampling scheme,
and the error included in the data[14-16]. In the ARXPS
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measurcment, such parameters are mainly bounded by
the physical geometry of ARXPS instruments. Typical
parameters arc sampling angle range (Bn = 90-15
degree; p, = 1.0-3.8), cffcctive sampling depth (up to
4}), acceptance angle (5-15 degree) which limits the
number of the data., and contained uncertainty (up to
10%) in the ARXPS data. In this study, the effect of
such parameters was investigated.

Simulated data with random Gaussian errors, F(py),
were generated using several types of concentration
depth profiles; F(p,) = F(pp)' (I + o) where F(p,)' is
the generated data with zero random error and o is
Gaussian random error with specific relative standard
deviation such as | and 10%.

With the gencrated data, F(py). the singular system
and HMP approaches were used to recover an original
concentration depth profile by solving the Fredholm
integral cquation of the second kind (Eq.3). The
smoothing paramcter was determined by the application

of the GCV technique. To compare the results, relative
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Fig. 2. Representative {{x)'s obtained by the application of
(a) the singufar system and (b) the HMP approaches from
the data with 0% (o). 1% (). and 10% (e) errors. Original
f(x) is shown as a solid line. Number of the data = 8.

error , L{%), of the recovered depth profile is used. The
L(%) is the magnitude of the difference between the
recovered and the original depth profiles divided by the
magnitude of the original depth profile. All the
calculations were performed ten times for each casé and
the average values are considered in this study.

The characteristics of the singular system and HMP
approaches were evaluated for f(x) = exp(-x/2) case, In
Fig.2(a), representative f(x)'s obtained by the application
of the singular system approach from the data with 1%
and 10% errors are shown. Results for the data with 1%
and 10% random errors demonstrate the utility of the
method. It is clear that the mcthod provides stable,
consistent, and reasonable depth profiles with
considering the error contained in the data. The GCV
technique is imperative for the applicability of the
method because it is important to find the value of the
smoothing parameter which ensures the stable,
consistent, and reasonable solution. For the GCV
technique, the information on the uncertainty of the data
is not required. Since the uncertainty of the real data is
usually not known, the GCV technique is quite valuable.

The HMP approach provides qualitatively similar
results for the data with 1% and 10% errors to those of
the singular system as shown in Fig.2(b). For the data
with no error, the solution was obtained by the
application of conventional inversion method. The
solution appears unstable at the shallow region although

the overall feature follows the original f(x). The conven-

Table L Relative error, L(%), of the solutions for the
different number of the data.

HMP approach singular system
appraach
random error number of the data

included in the data 8 6 4 8 6 4

0 (%) 512 19 1.5 08 2.2 6.2
1 (%) 227 185 62 87 110 8.2
10 (%) 275 214 145 167 168 169
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tional inversion in the singular system approach for the
data with no error provides almost identical solution
with the original f{x). The difference is due to the
different mathematical formulation. It is well known the
inverse of a matrix becomes more ill-posed as the size of
the matrix gets larger. Results for the data with no error
in Table I shows that the HMP approach produces much
different solution from the original f{x) when the number
of the data is eight. When the number of the data is six
or four, the HMP approach shows little ill-posedness.
Since the HMP approach employs the matrix
manipulation, the larger number of the data can
adversely affect the data analysis. On the contrary, the
singular system approach produces the best result for the
data with no error when the number of the data is eight.
The solution of the singular system approach is the
linear combination of the exp(-p,, x) functions, where the
number of the functions is that of the data. The solution
with the larger number of the functions can better
describe the original f(x).

By the application of the regularization technique,
the unstability of the solution shown in the eight data
case of the HMP approach is smoothed out and even the
data with 1% and 10% errors produce the better results
(Fig.2(b) and Table I). The ill-posedness of the matrix
still affects the results for the 1% and 10% error cases
and the singular system approach performs better.

However, the amount of the error included in the data is

Table II Relative error, L(%), of the solutions for the
different sampling schemes with f(x) = exp(-t/2) and the
eight sampling data. (HMP and SS indicate HMP and
singular system approaches, respectively)

equidistance  gravimetric  equiangular

sampling sampling sampling
random error
included HMP SS HMP SS HMP S§
1 (%) 227 8.7 223 82 24.7 9.4
10 (%) 27.5 167 281 197 0.0 151
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crucial. As thé amount of the error increases, the
discrepancy between the solution and the original fix)
gets larger.

Since it is known that the effect of sampling method
is considered significant in the application of the
method[11-13],  different

schemes such as equidistance, gravimetric, and

regularization sampling
equiangular samplings which can be employed in the
ARXPS measurement are evaluated. In the equidistance
sampling, the take-off angles (8,) during the
measurements are set as p, = ¢ + d (n-1) where p, =
/sin(8,), ¢ and d are parameters,n=1, 2, ..., N, and N
is the number of the data. When the number of the data
is determined, the values of ¢ and d are arranged to
cover the range of the take-off angles (6, = 90-15
degree). In the gravimetric sampling, p, = ¢ d ™! and in
the equiangular sampling, 8, = ¢ + d (n-1). As shown in
Table II, the differences between the results of the
diffcrent sampling schemes are not notable. The
gravimetric sampling design was reported to provide
better results than those from the equidistance sampling
design[9,13-15]. The studies emphasized it is important
that the range of the sampling points is to be large and
the value of the initial sampling point is very close to
zero. Since sampling points in the ARXPS measurement
are in a limited range (p, = 1.0-3.8) and the initial
sampling point starts from 1.0, different sampling
designs do not show significant differences.

The regularization method were applied to other
types of depth profile function such as f{x) = x«exp(-x),
exp(-2#(x-1.5)2), and a step function. For the fix) =
x*exp(-x), representative solutions obtained by the
application of the HMP and singular system approaches
are shown in Fig. 3. Both of the approaches produces
quite accurate solutions for the data with 1% error, For
the data with 10% error, both of the approaches
produces less accurate solutions, and yet they are
qualitatively reasonable ones with considering the

amount of the error included in the data. The results are
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Fig. 3. Representative f(x)'s obtained by the application of
(a) the singular system and (b) the HMP approaches from
the data with 1% (=) and 10% (e) crrors. Original f(x) is
shown as a solid line. Number of the data = 8 and f(x) = x
exp(-x).

very promising because the extraction of the depth
profile information from the complex depth profile
system is only feasible by the application of the
regularization method. Furthermore, the regularization
method demonstrates its  applicability because the
comparable results between two types of the approaches
were obtained for the 1% and 10% error cases although
two approaches employed the different mathematical
formulations.

Representative solutions for the f{x) = exp(-2#(x-
1.5)2) arc shown in F ig. 4. The stable and qualitatively
accurate solutions are obtained for the data with 1%
error.  The singular system approach produces
qualitatively different solution from the original f{x) for
the data with 10% crror. The HMP approach provides
better solution. It is probable that the singular system
approach would not well portray the function type of the
exp(-x2) because the regularized solution is the linear
combination of the exp(-x) functions. If the results of the

two approaches are comparable, it would be regarded as
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Fig. 4. Representative f(x)'s obtained by the application of
(a) the singular system and (b) the HMP approaches from
the data with 1% (=) and 10% (e) errors. Original f(x) is
shown as a solid line. Number of the data = 8 and f(x) =
exp(-24(x-1.5))

the obtained solutions are accurate. Since the standard
ARXPS samples with the complex types of the depth
profile are not available, the combinational use of two
approaches would be quite valuable for confirming the
validity of the results.

For the step function type of the depth profile, two
approaches produce smooth solutions as shown in Fig.5.
The step function resembles the simple overlay sample
system most frequently investigated by the ARXPS
technique. For the sample system, most valuable
chemical information is the location of the interface
which is not clearly determinable in the regularization
method. The regularization method extracts the stable
solution by introducing the smoothing parameter. The
solution is inherently smooth which is contrary to the
nature of the step function. The overlay sample can be
analyzed by using the exact analytical solution for- its
Laplace transform without the inverse operation[1,4,5].
The method works well for the overlay sample.
However, the extraction of the information on the depth
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Fig. 5. Representative f(x)'s obtained by the application of
(a) the singular system and (b) the HMP approaches from
the data with 0% (0). 1% (=), and 10% () errors. Original
f(x) is shown as a solid line. Number of the data = 8 and f(x)
is a step function.

profiles of the more complex sample systems are only

possible using the regularization method.

Conclusions

Various types of concentration depth profile from
the simulated data with considerable random error are
obtained using two types of the regularization method.
The singular system and the HMP approaches provide
stable, consistent, and qualitatively accurate solutions
for the complex depth profile systems with considering
the large amount of the errors included in the data.

Optimal smoothing parameter values are obtained
by the application of the GCV technique. With the GCV
technique, the information on the uncertainty of the data
is not required @ priori. Since the uncertainty of the real
data is usually not known, GCV technique is quite

valuable.
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The gravimetric sampling design was reported to
provide better results than those from the equidistance
sampling design. In that case, the initial sampling point
is very close to zero. Since sampling points in ARXPS
are in a limited range (p,, = 1.0-3.8), different sampling
designs do not show much significant differences. The
effect of the different sampling design becomes minor
one due to the physical limitation imposed in the
ARXPS measurement.

The regularization method produces different results
according to the types of the depth profiles. The step
function type of the depth profile is recovered as much
smoothed form. The regularization method works well
for the smooth depth profiles such as exp(-x/2), xsexp(-
x), and exp(-x?) functions. The applicability of the
regularization method to such complex depth profiles is

demonstrated in this study.
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