• 제목/요약/키워드: Numerical algorithm

검색결과 4,130건 처리시간 0.028초

Finite element impact analysis for the design of structurally dissipating rock-shed

  • Zhang, Yi;Toutlemonde, Francois;Lussou, Philippe
    • Computers and Concrete
    • /
    • 제6권2호
    • /
    • pp.109-132
    • /
    • 2009
  • This paper presents finite element impact analysis for the design of Structurally Dissipating Rock-shed (SDR), an innovative design of reinforced concrete rock-shed. By using an appropriate finite element impact algorithm, the SDR structure is modelled in a simplified but efficient way. The numerical results are firstly verified through comparisons with the results of the experiments recently realized by ESIGEC and TONELLO I.C. It is shown that, using this impact algorithm, it is possible to correctly predict the SDR structural behaviour under different rock-fall impact conditions. Moreover, the numerical results show that the slab centre is the critical impact location for reinforced concrete slab design. The impact analyses have thus been focused on the impacts at the slab centre for the SDR structural optimization. Several series of parametric studies have been carried out with respect to load cases and engineering parameters choices. These numerical results support the robustness of the new SDR concept, and serve to optimize SDR structure and improve its conventional engineering design, especially for ensuring the slab punching shear resistance.

이동물체에 의한 보 구조물의 진동 해석 (Vibration Analysis of the Beam Structure with a Moving Mass)

  • 이우식;임강민
    • 전산구조공학
    • /
    • 제8권4호
    • /
    • pp.57-64
    • /
    • 1995
  • 본 논문에서는 이동물체에 의해 가진 받는 보의 동적반응을 보다 용이하게 다룰 수 있는 간결한 수치해석 알고리즘을 제안하였다. 구조물과 이동물체를 각각 균일한 Euler보와 질점으로 모델링하여 보의 운동방정식을 유도하였으며 이 식을 유연영향함수를 이용하여 적분형 미분방정식으로 바꾸어줌으로써 수치해석에 적용할 수 있는 형태로 바꾸어 주었다. 유도된 운동방정식을 모우드 해석기법을 이용하여 수치해를 구하였으며 기존의 수치해석 연구결과들과 비교하여 본 연구결과의 타당성을 검증함으로써 본 연구에서 개발한 수치해석 알고리즘은 이동물체에 의해 가진받는 보의 초기 해석과 설계과정에서 효율적으로 사용할 수 있음을 보였다.

  • PDF

삼각형 적응격자 유한요소법을 이용한 압축성 Navier-Stokes 유동의 해석 (Adaptive Triangular Finite Element Method for Compressible Navier - Stokes Flows)

  • 임예훈;장근식
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.88-97
    • /
    • 1996
  • This paper treats an adaptive finite-element method for the viscous compressible flow governed by Navier-Stokes equations in two dimensions. The numerical algorithm is the two-step Taylor-Galerkin mettled using unstructured triangular grids. To increase accuracy and stability, combined moving node method and grid refinement method have been used for grid adaption. Validation of the present algorithm has been made by comparing the present computational results with the existing experimental data and other numerical solutions. Four benchmark problems are solved for demonstration of the present numerical approach. They include a subsonic flow over a flat plate, the Carter flat plate problem, a laminar shock-boundary layer interaction. and finally a laminar flow around NACA0012 airfoil at zero angle of attack and free stream Mach number of 0.85. The results indicates that the present adaptive triangular grid method is accurate and useful for laminar viscous flow calculations.

  • PDF

유입난류와 평판 캐스케이드 상호작용에 따른 광대역 소음 해석을 위한 효율적인 시간영역 수치기법의 개발 (Development of Efficient Numerical Method in Time-domain for Broadband Noise due to Turbulence-cascade Interaction)

  • 김상호;정철웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.477-482
    • /
    • 2009
  • An efficient time-domain numerical method for the analysis of broadband noise generation and propagation due to turbulence-cascade interaction is developed. The core algorithm of the present method is based on the B-periodicity of the acoustic response function of the flat-airfoil cascade to the ingesting gust (B denotes the number of airfoils in the cascade). To confirm this periodicity, gust-cascade interaction problem are solved by using the time-domain method, which shows that the incident gust with the circumferential mode number having the same remainders when divided by the airfoil number excites the same acoustic response of the cascade. Using the proposed fast algorithm with this periodicity, we show that the total computation time for the model broadband problem using the total 525 incident gust modes can be reduced to about 1/4 of that taken in using the previous time-domain program.

  • PDF

Three dimensional finite element simulations of fracture tests using the Craft concrete model

  • Jefferson, A.D.;Barr, B.I.G.;Bennett, T.;Hee, S.C.
    • Computers and Concrete
    • /
    • 제1권3호
    • /
    • pp.261-284
    • /
    • 2004
  • Two enhancements to a recently developed plastic-damage-contact model for concrete are presented. The model itself, which uses planes of degradation that can undergo damage and separation but that can regain contact according to a contact law, is described. The first enhancement is a new damage evolution function which provides a completely smooth transition from the undamaged to the damaged state and from pre-peak to post-peak regions. The second is an improved contact function that governs the potential degree of contact with increasing opening on a crack plane. The use of a damage evolution function with a pre-peak has implications for the consistent tangent matrix/stress recovery algorithm developed for the model implementation, and amendments to this algorithm to accommodate the new function are described. A series of unpublished experimental tests on notched specimens undertaken in Cardiff in the mid 1990s are then described. These include notched beam tests as well as prismatic and cylindrical torsion tests. The tests are then considered in three dimensional finite element analyses using the modified Craft model implemented in the finite element program LUSAS. Comparisons between experimental and numerical data show reasonable agreement except that the numerical simulations do not fully describe the latter stages of the softening responses for the torsion examples. Finally, it is concluded that the torsion tests described provide useful benchmark examples for the validation of three-dimensional numerical models for concrete.

평면 곡선의 교점 계산에 있어 곡선 특성화, 분할, 근사, 음함수화 및 뉴턴 방법을 이용한 Mix-and-Mntch알고리즘 (A Planar Curve Intersection Algorithm : The Mix-and-Match of Curve Characterization, Subdivision , Approximation, Implicitization, and Newton iteration)

  • 김덕수;이순웅;유중형;조영송
    • 한국CDE학회논문집
    • /
    • 제3권3호
    • /
    • pp.183-191
    • /
    • 1998
  • There are many available algorithms based on the different approaches to solve the intersection problems between two curves. Among them, the implicitization method is frequently used since it computes precise solutions fast and is robust in lower degrees. However, once the degrees of curves to be intersected are higher than cubics, its computation time increases rapidly and the numerical stability gets worse. From this observation, it is natural to transform the original problem into a set of easier ones. Therefore, curves are subdivided appropriately depending on their geometric behavior and approximated by a set of rational quadratic Bezier cures. Then, the implicitization method is applied to compute the intersections between approximated ones. Since the solutions of the implicitization method are intersections between approximated curves, a numerical process such as Newton-Raphson iteration should be employed to find true intersection points. As the seeds of numerical process are close to a true solution through the mix-and-match process, the experimental results illustrates that the proposed algorithm is superior to other algorithms.

  • PDF

AN EFFICIENT AND STABLE ALGORITHM FOR NUMERICAL EVALUATION OF HANKEL TRANSFORMS

  • Singh, Om P.;Singh, Vineet K.;Pandey, Rajesh K.
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1055-1071
    • /
    • 2010
  • Recently, a number of algorithms have been proposed for numerical evaluation of Hankel transforms as these transforms arise naturally in many areas of science and technology. All these algorithms depend on separating the integrand $rf(r)J_{\upsilon}(pr)$ into two components; the slowly varying component rf(r) and the rapidly oscillating component $J_{\upsilon}(pr)$. Then the slowly varying component rf(r) is expanded either into a Fourier Bessel series or various wavelet series using different orthonormal bases like Haar wavelets, rationalized Haar wavelets, linear Legendre multiwavelets, Legendre wavelets and truncating the series at an optimal level; or approximating rf(r) by a quadratic over the subinterval using the Filon quadrature philosophy. The purpose of this communication is to take a different approach and replace rapidly oscillating component $J_{\upsilon}(pr)$ in the integrand by its Bernstein series approximation, thus avoiding the complexity of evaluating integrals involving Bessel functions. This leads to a very simple efficient and stable algorithm for numerical evaluation of Hankel transform.

Numerical investigation of the effects angles of attack on the flutter of a viscoelastic plate

  • Sherov, A.G.;Khudayarov, B.A.;Ruzmetov, K.Sh.;Aliyarov, J.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권3호
    • /
    • pp.215-228
    • /
    • 2020
  • As is shown in the paper, the Koltunov-Rzhanitsyn singular kernel of heredity (when constructing mathematical models of the dynamics problem of the hereditary theory of viscoelasticity) adequately describes real mechanical processes, best approximates experimental data for a long period of time. A mathematical model of the problem of the flutter of viscoelastic plates moving in a gas with a high supersonic velocity is given. Using the Bubnov-Galerkin method, discrete models of the problem of the flatter of viscoelastic plates flowed over by supersonic gas flow are obtained. A numerical method is developed to solve nonlinear integro-differential equations (IDE) for the problem of the hereditary theory of viscoelasticity with weakly singular kernels. A general computational algorithm and a system of application programs have been developed, which allow one to investigate the nonlinear dynamic problems of the hereditary theory of viscoelasticity with weakly singular kernels. On the basis of the proposed numerical method and algorithm, nonlinear problems of the flutter of viscoelastic plates flowed over in a gas flow at an arbitrary angle are investigated. In a wide range of changes in various parameters of the plate, the critical velocity of the flutter is determined. It is shown that the singularity parameter α affects not only the oscillations of viscoelastic systems, but the critical velocity of the flutter as well.

Experimental and numerical structural damage detection using a combined modal strain energy and flexibility method

  • Seyed Milad Hosseini;Mohamad Mohamadi Dehcheshmeh;Gholamreza Ghodrati Amiri
    • Structural Engineering and Mechanics
    • /
    • 제87권6호
    • /
    • pp.555-574
    • /
    • 2023
  • An efficient optimization algorithm and damage-sensitive objective function are two main components in optimization-based Finite Element Model Updating (FEMU). A suitable combination of these components can considerably affect damage detection accuracy. In this study, a new hybrid damage-sensitive objective function is proposed based on combining two different objection functions to detect the location and extent of damage in structures. The first one is based on Generalized Pseudo Modal Strain Energy (GPMSE), and the second is based on the element's Generalized Flexibility Matrix (GFM). Four well-known population-based metaheuristic algorithms are used to solve the problem and report the optimal solution as damage detection results. These algorithms consist of Cuckoo Search (CS), Teaching-Learning-Based Optimization (TLBO), Moth Flame Optimization (MFO), and Jaya. Three numerical examples and one experimental study are studied to illustrate the capability of the proposed method. The performance of the considered metaheuristics is also compared with each other to choose the most suitable optimizer in structural damage detection. The numerical examinations on truss and frame structures with considering the effects of measurement noise and availability of only the first few vibrating modes reveal the good performance of the proposed technique in identifying damage locations and their severities. Experimental examinations on a six-story shear building structure tested on a shake table also indicate that this method can be considered as a suitable technique for damage assessment of shear building structures.

NUMERICAL SOLUTIONS OF AN UNSTEADY 2-D INCOMPRESSIBLE FLOW WITH HEAT AND MASS TRANSFER AT LOW, MODERATE, AND HIGH REYNOLDS NUMBERS

  • AMBETHKAR, V.;KUSHAWAHA, D.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제21권2호
    • /
    • pp.89-107
    • /
    • 2017
  • In this paper, we have proposed a modified Marker-And-Cell (MAC) method to investigate the problem of an unsteady 2-D incompressible flow with heat and mass transfer at low, moderate, and high Reynolds numbers with no-slip and slip boundary conditions. We have used this method to solve the governing equations along with the boundary conditions and thereby to compute the flow variables, viz. u-velocity, v-velocity, P, T, and C. We have used the staggered grid approach of this method to discretize the governing equations of the problem. A modified MAC algorithm was proposed and used to compute the numerical solutions of the flow variables for Reynolds numbers Re = 10, 500, and 50000 in consonance with low, moderate, and high Reynolds numbers. We have also used appropriate Prandtl (Pr) and Schmidt (Sc) numbers in consistence with relevancy of the physical problem considered. We have executed this modified MAC algorithm with the aid of a computer program developed and run in C compiler. We have also computed numerical solutions of local Nusselt (Nu) and Sherwood (Sh) numbers along the horizontal line through the geometric center at low, moderate, and high Reynolds numbers for fixed Pr = 6.62 and Sc = 340 for two grid systems at time t = 0.0001s. Our numerical solutions for u and v velocities along the vertical and horizontal line through the geometric center of the square cavity for Re = 100 has been compared with benchmark solutions available in the literature and it has been found that they are in good agreement. The present numerical results indicate that, as we move along the horizontal line through the geometric center of the domain, we observed that, the heat and mass transfer decreases up to the geometric center. It, then, increases symmetrically.