DOI QR코드

DOI QR Code

Experimental and numerical structural damage detection using a combined modal strain energy and flexibility method

  • Received : 2022.05.23
  • Accepted : 2023.08.07
  • Published : 2023.09.25

Abstract

An efficient optimization algorithm and damage-sensitive objective function are two main components in optimization-based Finite Element Model Updating (FEMU). A suitable combination of these components can considerably affect damage detection accuracy. In this study, a new hybrid damage-sensitive objective function is proposed based on combining two different objection functions to detect the location and extent of damage in structures. The first one is based on Generalized Pseudo Modal Strain Energy (GPMSE), and the second is based on the element's Generalized Flexibility Matrix (GFM). Four well-known population-based metaheuristic algorithms are used to solve the problem and report the optimal solution as damage detection results. These algorithms consist of Cuckoo Search (CS), Teaching-Learning-Based Optimization (TLBO), Moth Flame Optimization (MFO), and Jaya. Three numerical examples and one experimental study are studied to illustrate the capability of the proposed method. The performance of the considered metaheuristics is also compared with each other to choose the most suitable optimizer in structural damage detection. The numerical examinations on truss and frame structures with considering the effects of measurement noise and availability of only the first few vibrating modes reveal the good performance of the proposed technique in identifying damage locations and their severities. Experimental examinations on a six-story shear building structure tested on a shake table also indicate that this method can be considered as a suitable technique for damage assessment of shear building structures.

Keywords

Acknowledgement

The experiments were conducted in the International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran. The assistance of the lab staff in preparing and testing the structural system is appreciated.

References

  1. Ahmadi-Nedushan, B. and Fathnejat, H. (2022), "A modified teaching-learning optimization algorithm for structural damage detection using a novel damage index based on modal flexibility and strain energy under environmental variations", Eng. Comput., 38(1), 847-874. https://doi.org/10.1007/s00366-020-01197-3.
  2. Alkayem, N.F., Cao, M., Zhang, Y., Bayat, M. and Su, Z. (2018), "Structural damage detection using finite element model updating with evolutionary algorithms: a survey", Neur. Comput. Appl., 30(2), 389-411. https://doi.org/10.1007/s00521-017-3284-1.
  3. Alkayem, N.F., Shen, L., Asteris, P.G., Sokol, M., Xin, Z. and Cao, M. (2022), "A new self-adaptive quasi-oppositional stochastic fractal search for the inverse problem of structural damage assessment", Alex. Eng. J., 61(3), 1922-1936. https://doi.org/10.1016/j.aej.2021.06.094.
  4. Arabha Najafabadi, A., Daneshjoo, F. and Ahmadi, H.R. (2020), "Multiple damage detection in complex bridges based on strain energy extracted from single point measurement", Front. Struct. Civil Eng., 14(3), 722-730. https://doi.org/10.1007/s11709-020-0624-5.
  5. Aval, S.B.B. and Mohebian, P. (2020), "Combined joint and member damage identification of skeletal structures by an improved biology migration algorithm", J. Civil Struct. Hlth. Monit., 10(3), 357-375. https://doi.org/10.1007/s13349-020-00390-8.
  6. Aval, S.B.B. and Mohebian, P. (2021), "A novel optimization algorithm based on modal force information for structural damage identification", Int. J. Struct. Stab. Dyn., 21(07), 2150100. https://doi.org/10.1142/S0219455421501005.
  7. Barroso, L.R. and Rodriguez, R. (2004), "Damage detection utilizing the damage index method to a benchmark structure", J. Eng. Mech., 130(2), 142-151. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:2(142).
  8. Ben Guedria, N. (2020), "An accelerated differential evolution algorithm with new operators for multi-damage detection in plate-like structures", Appl. Math. Model., 80, 366-383. https://doi.org/10.1016/j.apm.2019.11.023.
  9. Brincker, R., Zhang, L. and Andersen, P. (2001), "Modal identification of output-only systems using frequency domain decomposition", Smart Mater. Struct., 10(3), 441. https://doi.org/10.1088/0964-1726/10/3/303.
  10. Bureerat, S. and Pholdee, N. (2018), "Inverse problem based differential evolution for efficient structural health monitoring of trusses", Appl. Soft Comput., 66, 462-472. https://doi.org/10.1016/j.asoc.2018.02.046.
  11. Cha, Y.J. and Buyukozturk, O. (2015), "Structural damage detection using modal strain energy and hybrid multiobjective optimization", Comput. Aid. Civil Infrastr. Eng., 30(5), 347-358. https://doi.org/10.1111/mice.12122.
  12. Das, S. and Saha, P. (2021), "Performance of swarm intelligence based chaotic meta-heuristic algorithms in civil structural health monitoring", Measure., 169, 108533. https://doi.org/10.1016/j.measurement.2020.108533.
  13. Das, S., Saha, P. and Patro, S.K. (2016), "Vibration-based damage detection techniques used for health monitoring of structures: a review", J. Civil Struct. Hlth. Monit., 6(3), 477-507. 10.1007/s13349-016-0168-5.
  14. Dehcheshmeh, M.M., Amiri, G.G., Hosseinzadeh, A.Z. and Torbatinejad, V. (2022), "Structural damage detection based on modal data using moth-flame optimisation algorithm", Proc. Inst. Civil Eng.-Struct. Build., 175(2), 79-93. https://doi.org/10.1680/jstbu.18.00121.
  15. Dehcheshmeh, M.M., Hosseinzadeh, A.Z. and Amiri, G.G. (2020), "Feasibility study on model-based damage detection in shear frames using pseudo modal strain energy", Smart Struct. Syst., 25(1), 47-56. https://doi.org/10.12989/sss.2020.25.1.047.
  16. Dinh-Cong, D., Nguyen-Thoi, T. and Nguyen, D.T. (2020), "A FE model updating technique based on SAP2000-OAPI and enhanced SOS algorithm for damage assessment of full-scale structures", Appl. Soft Comput., 89, 106100. https://doi.org/10.1016/j.asoc.2020.106100.
  17. Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib. Digest, 30(2), 91-105. https://doi.org/10.1177/058310249803000201.
  18. Du, D.C., Vinh, H.H., Trung, V.D., Hong Quyen, N.T. and Trung, N.T. (2018), "Efficiency of Jaya algorithm for solving the optimization-based structural damage identification problem based on a hybrid objective function", Eng. Optim., 50(8), 1233-1251. https://doi.org/10.1080/0305215X.2017.1367392.
  19. Fan, W. and Qiao, P. (2011), "Vibration-based damage identification methods: A review and comparative study", Struct. Hlth. Monit., 10(1), 83-111. https://doi.org/10.1177/1475921710365419.
  20. Fathnejat, H. and Ahmadi-Nedushan, B. (2020), "An efficient two-stage approach for structural damage detection using meta-heuristic algorithms and group method of data handling surrogate model", Front. Struct. Civil Eng., 14(4), 907-929. https://doi.org/10.1007/s11709-020-0628-1.
  21. Friswell, M.I., Penny, J.E.T. and Garvey, S.D. (1998), "A combined genetic and eigensensitivity algorithm for the location of damage in structures", Comput. Struct., 69(5), 547-556. https://doi.org/10.1016/S0045-7949(98)00125-4.
  22. Ghannadi, P., Khatir, S., Kourehli, S.S., Nguyen, A., Boutchicha, D. and Abdel Wahab, M. (2023), "Finite element model updating and damage identification using semi-rigidly connected frame element and optimization procedure: An experimental validation", Struct., 50, 1173-1190. https://doi.org/10.1016/j.istruc.2023.02.008.
  23. Ghannadi, P. and Kourehli, S.S. (2020), "Multiverse optimizer for structural damage detection: Numerical study and experimental validation", Struct. Des. Tall Spec. Build., 29(13), e1777. https://doi.org/10.1002/tal.1777.
  24. Ghasemi, M.R., Nobahari, M. and Shabakhty, N. (2018), "Enhanced optimization-based structural damage detection method using modal strain energy and modal frequencies", Eng. Comput., 34(3), 637-647. https://doi.org/10.1007/s00366-017-0563-5.
  25. Gomes, G.F., Mendez, Y.A.D., da Silva Lopes Alexandrino, P., da Cunha, S.S. and Ancelotti, A.C. (2019), "A review of vibration based inverse methods for damage detection and identification in mechanical structures using optimization algorithms and ANN", Arch. Comput. Meth. Eng., 26(4), 883-897. https://doi.org/10.1007/s11831-018-9273-4.
  26. Hosseini, S.M., Amiri, G.G. and Dehcheshmeh, M.M. (2020), "Efficiency evaluation of proposed objective functions in structural damage detection based on modal strain energy and flexibility approaches", Int. J. Optim. Civil Eng., 10(1), 71-90.
  27. Hosseinzadeh, A.Z., Amiri, G.G. and Koo, K.Y. (2016), "Optimization-based method for structural damage localization and quantification by means of static displacements computed by flexibility matrix", Eng. Optim., 48(4), 543-561. https://doi.org/10.1080/0305215X.2015.1017476.
  28. Hosseinzadeh, A.Z., Amiri, G.G., Razzaghi, S.A.S., Koo, K.Y. and Sung, S.H. (2016), "Structural damage detection using sparse sensors installation by optimization procedure based on the modal flexibility matrix", J. Sound Vib., 381, 65-82. https://doi.org/10.1016/j.jsv.2016.06.037.
  29. Huang, M., Li, X., Lei, Y. and Gu, J. (2020), "Structural damage identification based on modal frequency strain energy assurance criterion and flexibility using enhanced Moth-Flame optimization", Struct., 28, 1119-1136. https://doi.org/10.1016/j.istruc.2020.08.085.
  30. Kaveh, A., Akbari, H. and Hosseini, S.M. (2021), "Plasma generation optimization: A new physically-based metaheuristic algorithm for solving constrained optimization problems", Eng. Comput., 38(4), 1554-1606. https://doi.org/10.1108/EC-05-2020-0235.
  31. Kaveh, A., Hosseini, S.M. and Akbari, H. (2021), "Efficiency of plasma generation optimization for structural damage identification of skeletal structures based on a hybrid cost function", Iran. J. Sci. Technol., Trans. Civil Eng., 45(4), 2069-2090. https://doi.org/10.1007/s40996-020-00504-8.
  32. Kaveh, A., Hosseini, S.M. and Zaerreza, A. (2021), "Boundary strategy for optimization-based structural damage detection problem using metaheuristic algorithms", Periodica Polytechnica Civil Eng., 65(1), 150-167. https://doi.org/10.3311/PPci.16924.
  33. Kaveh, A. and Maniat, M. (2015), "Damage detection based on MCSS and PSO using modal data", Smart Struct. Syst., 15(5), 1253-1270. https://doi.org/10.12989/sss.2015.15.5.1253.
  34. Kim, J.T., Ryu, Y.S., Cho, H.M. and Stubbs, N. (2003), "Damage identification in beam-type structures: Frequency-based method vs mode-shape-based method", Eng. Struct., 25(1), 57-67. https://doi.org/10.1016/S0141-0296(02)00118-9.
  35. Kong, X., Cai, C.S. and Hu, J. (2017), "The state-of-the-art on framework of vibration-based structural damage identification for decision making", Appl. Sci., 7(5), 497. https://doi.org/10.3390/app7050497.
  36. Li, J., Wu, B., Zeng, Q.C. and Lim, C.W. (2010), "A generalized flexibility matrix based approach for structural damage detection", J. Sound Vib., 329(22), 4583-4587. https://doi.org/10.1016/j.jsv.2010.05.024.
  37. Li, Y., Zhang, M. and Yang, W. (2018), "Numerical and experimental investigation of modal-energy-based damage localization for offshore wind turbine structures", Adv. Struct. Eng., 21(10), 1510-1525. https://doi.org/10.1177/1369433217750725.
  38. Masoumi, M., Jamshidi, E. and Bamdad, M. (2015), "Application of generalized flexibility matrix in damage identification using imperialist competitive algorithm", KSCE J. Civil Eng., 19(4), 994-1001. https://doi.org/10.1007/s12205-015-0224-4.
  39. Materazzi, A.L. and Ubertini, F. (2011), "Eigenproperties of suspension bridges with damage", J. Sound Vib., 330(26), 6420-6434. https://doi.org/10.1016/j.jsv.2011.08.007.
  40. Minh, H.-L., Khatir, S., Rao, R.V., Abdel Wahab, M. and Cuong-Le, T. (2023), "A variable velocity strategy particle swarm optimization algorithm (VVS-PSO) for damage assessment in structures", Eng. Comput., 39(2), 1055-1084. https://doi.org/10.1007/s00366-021-01451-2.
  41. Minh, H.-L., Sang-To, T., Khatir, S., Abdel Wahab, M. and Cuong-Le, T. (2023), "Damage identification in high-rise concrete structures using a bio-inspired meta-heuristic optimization algorithm", Adv. Eng. Softw., 176, 103399. https://doi.org/10.1016/j.advengsoft.2022.103399.
  42. Mirjalili, S. (2015), "Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm", Knowled.-Bas. Syst., 89, 228-249. https://doi.org/10.1016/j.knosys.2015.07.006.
  43. Mishra, M., Barman, S.K., Maity, D. and Maiti, D.K. (2019), "Ant lion optimisation algorithm for structural damage detection using vibration data", J. Civil Struct. Hlth. Monit., 9(1), 117-136. https://doi.org/10.1007/s13349-018-0318-z.
  44. Mishra, M., Barman, S.K., Maity, D. and Maiti, D.K. (2020), "Performance studies of 10 metaheuristic techniques in determination of damages for large-scale spatial trusses from changes in vibration responses", J. Comput. Civil Eng., 34(2), 04019052. https://doi.org/10.1061/(ASCE)CP.1943-5487.000087.
  45. Nguyen-Thoi, T., Tran-Viet, A., Nguyen-Minh, N., Vo-Duy, T. and Ho-Huu, V. (2018), "A combination of damage locating vector method (DLV) and differential evolution algorithm (DE) for structural damage assessment", Front. Struct. Civil Eng., 12(1), 92-108. https://doi.org/10.1007/s11709-016-0379-1.
  46. Nobahari, M. and Seyedpoor, S.M. (2013), "An efficient method for structural damage localization based on the concepts of flexibility matrix and strain energy of a structure", Struct. Eng. Mech., 46(2), 231-244. https://doi.org/10.12989/sem.2013.46.2.231.
  47. Rao, R.V. (2016), "Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems", Int. J. Ind. Eng. Comput., 7(1), 19-34. https://doi.org/10.5267/j.ijiec.2015.8.004.
  48. Rao, R.V. (2016), Teaching-Learning-Based Optimization Algorithm, Springer, Switzerland
  49. Rao, R.V. (2019), Jaya: An Advanced Optimization Algorithm and Its Engineering Applications, Springer, Switzerland.
  50. Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems", Comput.-Aid. Des., 43(3), 303-315. https://doi.org/10.1016/j.cad.2010.12.015.
  51. Seyedpoor, S.M. (2012), "A two stage method for structural damage detection using a modal strain energy based index and particle swarm optimization", Int. J. Nonlin. Mech., 47(1), 1-8. https://doi.org/10.1016/j.ijnonlinmec.2011.07.011.
  52. Seyedpoor, S.M. and Yazdanpanah, O. (2014), "An efficient indicator for structural damage localization using the change of strain energy based on static noisy data", Appl. Math. Model., 38(9), 2661-2672. https://doi.org/10.1016/j.apm.2013.10.072.
  53. Shahrouzi, M. and Sabzi, A.H. (2018), "Damage detection of truss structures by hybrid immune system and teaching-learning-based optimization", Asian J. Civil Eng., 19(7), 811-825. https://doi.org/10.1007/s42107-018-0065-9.
  54. Shehab, M., Abualigah, L., Al Hamad, H., Alabool, H., Alshinwan, M. and Khasawneh, A.M. (2020), "Moth-flame optimization algorithm: variants and applications", Neur. Comput. Appl., 32(14), 9859-9884. https://doi.org/10.1007/s00521-019-04570-6.
  55. Tiachacht, S., Bouazzouni, A., Khatir, S., Abdel Wahab, M., Behtani, A. and Capozucca, R. (2018), "Damage assessment in structures using combination of a modified Cornwell indicator and genetic algorithm", Eng. Struct., 177, 421-430. https://doi.org/10.1016/j.engstruct.2018.09.070.
  56. Wang, S. and Xu, M. (2019), "Modal strain energy-based structural damage identification: A review and comparative study", Struct. Eng. Int., 29(2), 234-248. https://doi.org/10.1080/10168664.2018.1507607.
  57. Wickramasinghe, W.R., Thambiratnam, D.P. and Chan, T.H.T. (2020), "Damage detection in a suspension bridge using modal flexibility method", Eng. Fail. Anal., 107, 104194. https://doi.org/10.1016/j.engfailanal.2019.104194.
  58. Xiong, C. and Lian, S. (2021), "Structural damage identification based on improved fruit fly optimization algorithm", KSCE J. Civil Eng., 25(3), 985-1007. https://doi.org/10.1007/s12205-021-1115-5.
  59. Yang, X.S. and Deb, S. (2014), "Cuckoo search: Recent advances and applications", Neur. Comput. Appl., 24(1), 169-174. https://doi.org/10.1007/s00521-013-1367-1.
  60. Yang, X.S. and Deb, S. (2009), "Cuckoo Search via Levy flights", 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).
  61. Yazdanpanah, O., Seyedpoor, S. and Akbarzadeh Bengar, H. (2015), "A new damage detection indicator for beams based on mode shape data", Struct. Eng. Mech., 53(4), 725-744. https://doi.org/10.12989/sem.2015.53.4.725.