• 제목/요약/키워드: NullPosition

검색결과 46건 처리시간 0.024초

유압서보밸브의 인-프로세스 성능 진단에 관한 연구 I - 유압실린더 위치제어계의 경우 - (A Study on In-Process Performance Diagnosis of Hydraulic Servovalves - First Report : Position Control System -)

  • 김성동;김경호;송재수;함영복;이재천
    • 유공압시스템학회논문집
    • /
    • 제3권1호
    • /
    • pp.7-14
    • /
    • 2006
  • In this paper, an in-process diagnosis method for performance of position control servo system was studied, which was based upon null bias, slew-rate ratio and delay time measurement. Slew-rate ratio and delay time were analyzed by theoretical analysis, computer simulation and experiment. As a result of these analysis, when spool of servovalve was weared, slew-rate ratio was decreased and delay time was increased.

  • PDF

다중 로보트의 위치, 운동야기힘과 내부힘의 강건 독립 제어 (Robust independent control for position motion-inducing force, and internal force of multi-robot)

  • 김종수;박세승;박종국
    • 전자공학회논문지B
    • /
    • 제33B권11호
    • /
    • pp.11-21
    • /
    • 1996
  • Robot manipulators constituing multi-robot system must exert the desired motion force on an object to preserve tghe fine motion of it. The forces exerte on an object by the end-effectors of multi-inducing force and the internal force. Here, motion-inducing force effects the motion of an object, but internal force as lies in the null space of an object coordinate can't effect it. The motion of an object can't track exactly the desired motion by the effect of an object, but internal force as lies in the null space of the effect of internal force component, therefore internal force component must be considered. In this paper, first, under assumption that we can estimate exactly the parameter of dynamics, we constitute paper, first, under assumption that we can estimate exactly the parameter of dynamics, we constitute the controller concerning internal force. And we obtain the internal force as projecting force sensor readings onto the space spanned by null basis set of jacobian matrix. Using the resolved acceleration control method and the fact that internal force lies in the null space of jacobian matrix, we construct the robust control law to preserve the robustness with respect to the uncertainty of mainpulator parameters.

  • PDF

An Implementation Method of Linearized Equations of Motion for Multibody Systems with Closed Loops

  • Bae, D.S.
    • 한국공작기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.71-78
    • /
    • 2003
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre-multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of all relative coordinates, velocities, and accelerations. Since the variables are tightly coupled by the position, velocity, and acceleration level coordinates, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all variables, which are coupled by the constraints. The position velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The Perturbed constraint equations are then simultaneously solved for variations of all variables only in terms of the variations of the independent variables. Finally, the relationships between the variations of all variables and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent variables variations.

구속된 다물체시스템의 선형화에 관한 연구 (A Linearization Method for Constrained Mechanical System)

  • 배대성;양성호;서준석
    • 대한기계학회논문집A
    • /
    • 제27권8호
    • /
    • pp.1303-1308
    • /
    • 2003
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre-multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of ail relative coordinates, velocities, and accelerations. Since the coordinates, velocities, and accelerations are tightly coupled by the position, velocity, and acceleration level constraints, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all coordinates, velocities, and accelerations, which are coupled by the constraints. The position, velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The perturbed constraint equations are then simultaneously solved for variations of all coordinates, velocities, and accelerations only in terms of the variations of the independent coordinates, velocities, and accelerations. Finally, the relationships between the variations of all coordinates, velocities, accelerations and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent coordinate, velocity, and acceleration variations.

구속된 다물체 시스템의 선형화에 관한 연구 (A Linearization Method for Constrained Mechanical Systems)

  • 배대성;최진환;김선철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.893-898
    • /
    • 2004
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of all relative coordinates, velocities, and accelerations. Since the coordinates, velocities, and accelerations are tightly coupled by the position, velocity, and acceleration level constraints, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all coordinates, velocities, and accelerations, which are coupled by the constraints. The position, velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The perturbed constraint equations are then simultaneously solved for variations of all coordinates, velocities, and accelerations only in terms of the variations of the independent coordinates, velocities, and accelerations. Finally, the relationships between the variations of all coordinates, velocities, accelerations and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent coordinate, velocity, and acceleration variations.

  • PDF

영위법을 이용한 미소중량 측정 장치의 기구설계 (Mechanism Design of the Micro Weighing Device by Using Null Balance Method)

  • 최인묵;우삼용;김부식;김수현
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.183-193
    • /
    • 2003
  • Micro-weighing device by using null balance method is being essential part in fields of high-technology industries such as precision semiconductor industry, precision chemistry, biotechnology and genetics etc. Also, requirements for high resolution and for large measurement range increase more and more. The performance of the micro-weighing device can be determined by the mechanism design and analysis. The analytical design method has been proposed for the performance improvement such as resolution, measurement range and fast response. The 2-stage displacement amplification is designed to overcome the limit of conventional force transmitting lever. The parallel spring is designed for the measurement result independent of the input force position variation. Also, the natural frequency of mechanism is analyzed for the fast response. After each analysis, optimal design has been carried out. To verify the analysis and design result, characteristics experiments had been carried out after construction. Finally, the system had been controlled.

4방향 스풀밸브의 중립특성에 관한 연구 (A Study on Null Characteristics of 4-way Spool Valve)

  • 함영복;윤소남;이근호;김성동
    • 한국정밀공학회지
    • /
    • 제17권8호
    • /
    • pp.165-171
    • /
    • 2000
  • In this study the 4-way spool valve characteristics are clearly defined and clearly defined and proposed new type of spool valve. This paper presents governing equations of the flow through clearances between sleeve and spool as a model of orifice flow for null characteristics analysis and programmed analysis software of it. This software is possible to basically analysis that not only which case of open center closed center or critical center but _ -displacement of spool lab position boundary region and spool opening of the valve and to estimate the pressure variation in the spool and external leak flow variation. We are convinced that the scale of load pressure difference is changed as lab condition of valve and this scale is changed with boundary point on the annular clearance. It is vary useful to designer and user of spool valve with this design data and analysis software.

  • PDF

2축 짐벌 구조 적재 장치를 위한 최소제곱법 기반 시스템 식별 (Least Squares Method-Based System Identification for a 2-Axes Gimbal Structure Loading Device)

  • 심예리;진상록
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.288-295
    • /
    • 2022
  • This study shows a system identification method of a balancing loading device for a stair climbing delivery robot. The balancing loading device is designed as a 2-axes gimbal structure and is interpreted as two independent pendulum structures for simplifying. The loading device's properties such as mass, moment of inertia, and position of the center of gravity are changeable for luggage. The system identification process of the loading device is required, and the controller should be optimized for the system in real-time. In this study, the system identification method is based on least squares method to estimate the unknown parameters of the loading device's dynamic equation. It estimates the unknown parameters by calculating them that minimize the error function between the real system's motion and the estimated system's motion. This study improves the accuracy of parameter estimation using a null space solution. The null space solution can produce the correct parameters by adjusting the parameter's relative sizes. The proposed system identification method is verified by the simulation to determine how close the estimated unknown parameters are to the real parameters.

2-TYPE HYPERSURFACES SATISFYING ⟨Δx, x - x0⟩ = const.

  • Jang, Changrim
    • East Asian mathematical journal
    • /
    • 제34권5호
    • /
    • pp.643-649
    • /
    • 2018
  • Let M be a connected n-dimensional submanifold of a Euclidean space $E^{n+k}$ equipped with the induced metric and ${\Delta}$ its Laplacian. If the position vector x of M is decomposed as a sum of three vectors $x=x_1+x_2+x_0$ where two vectors $x_1$ and $x_2$ are non-constant eigenvectors of the Laplacian, i.e., ${\Delta}x_i={\lambda}_ix_i$, i = 1, 2 (${\lambda}_i{\in}R$) and $x_0$ is a constant vector, then, M is called a 2-type submanifold. In this paper we proved that a connected 2-type hypersurface M in $E^{n+1}$ whose postion vector x satisfies ${\langle}{\Delta}x,x-x_0{\rangle}=c$ for a constant c, where ${\langle}$, ${\rangle}$ is the usual inner product in $E^{n+1}$, is of null 2-type and has constant mean curvature and scalar curvature.

이산 시간 스위칭 다이나믹을 이용한 새로운 슬라이딩 모드 제어 시스템의 설계 및 안정도 해석 (Design of new sliding mode control system using discrete-time switching dynamics and its stability analysis)

  • 김동식;서호준;서삼준;박귀태
    • 대한전기학회논문지
    • /
    • 제45권3호
    • /
    • pp.407-414
    • /
    • 1996
  • In this paper we consider the variable structure control for a class of discrete-time uncertain multivariable systems where the nominal system is linear. Discrete-time switching dynamics are introduced so that a new type of state trajectories called sliding mode may exist on the sliding surface by state feedback. The quantitative analysis for the matched uncertainties will show that every response of the system with the proposed switching dynamics is bounded within small neighborhoods of the state-space origin. Also, by the similarity transformation it will be shown that the eigenvalues of the closed-loop systems are composed of those of the subsystems which govern the range-space dynamics and null-space dynamics. It will be also shown that ideal sliding mode can be obtained in the absence of uncertainties due to one-step attraction to the sliding surface regardless of initial position of states. (author). 12 refs., 2 figs.

  • PDF