• Title/Summary/Keyword: Null optics

Search Result 23, Processing Time 0.018 seconds

Development of Profilometry based on a Curvature Measurement (곡률에 근거한 형상 측정기술 개발)

  • Kim, Byoung-Chang
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.130-134
    • /
    • 2007
  • I present a novel curvature profilometer devised fur the profile measurement of aspheric and free-form surfaces on the nanometer scale. A profile is reconstructed from measuring the curvature of a test part of the surface at several locations along a line. For profile measurement of free-farm surfaces, methods based on local part curvature sensing have strong appeal. Unlike full-aperture interferometry they do not require customized null optics. The measurement accuracy of the curvature profilometer was assessed by comparison with a well-calibrated interferometer in NIST. Experimental results prove that the maximum discrepancy turns out to be 37 nm on the 28 mm measurement range for the spherical mirror.

Review of the Hidden Rays of Diffraction

  • Kim, Se-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • A high-frequency analysis technique, called the hidden rays of diffraction (HRD), is reviewed in this paper. The physical optics and the rigorous diffraction coefficients of a perfectly conducting wedge illuminated by a plane wave are compared. The physical existence of hidden rays on the shadow boundary is explained in view of the geometric theory of diffraction (GTD). In particular, a systematic tracing of hidden rays and its visualization are precisely described by introducing the concept of the supplementary boundary. The physical meaning of the null-field condition in the complementary region is also explained.

Interferometric Testing of Fast CNC machined Aspheric Surface (CNC 가공된 급속한 비구면의 간섭계 검사)

  • 김광중;백성훈;김철중
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.216-217
    • /
    • 2000
  • 영상매체의 발달은 고성능의 정밀한 광학소자의 발전을 요구하게 된다. 이러한 광학소자는 제작의 용이함 때문에 주로 구면소자가 많이 사용되어 왔으나 구면소자만으로 해결하기 어려운 구면수차, 왜곡수차, 비점수차 등의 요인을 극소화하고 광학소자의 소형, 경량화를 위하여 비구면 광학소자의 사용이 필요하게 되었으며 비구면 가공기술의 발전과 더불어 그 사용이 증가하고 있다. 그러나 비구면광학소자는 제작과정의 어려움과 더불어 품질평가의 어려움이 있다. 특히 급속한 기울기를 가진 면의 측정은 3차원측정기에 의한 방법이나 간섭계를 사용한 단순한 null optics 검사로는 정확도와 실험의 한계가 있다. 비구면 광학소자의 평가방법으로는 간섭계를 사용하여 기준파면과 대상파면을 비교하는 일반적인 null testing과 최근에는 CGH(computer generated hologram)로 재생된 비구면파면과 대상파면을 비교하는 방법도 많이 연구되고 있다. 본 연구에서는 일반적인 검사방법으로는 검사가 어려운 급속한 기울기를 가진 포물면(parabolic surface)에 대한 하나의 검사방법을 제시하고자 한다. (중략)

  • PDF

Analysis of the Optical Measurement Error Induced by Vibration of the Optical Measurement Tower for Large Mirrors (대구경 반사경 광학측정용 타워의 진동에 의한 광학측정오차 분석)

  • Kang, Pilseong;Kim, Ohgan;Ahn, Hee Kyung;Yang, Ho-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.281-289
    • /
    • 2017
  • In the present research, the optical measurement error induced by vibration of the optical measurement tower for large mirrors at KRISS (Korea Research Institute of Standards and Science) is investigated. The vibrations of the tower structure, the interferometer, and the null lens are measured while the surface errors of the 600-mm-diameter on-axis aspheric mirror are measuring, under various environmental conditions. The increase of surface error induced by alignment error with respect to vibration is analyzed. As a result, the interferometer and the null lens, which are located on the top of the tower, are highly sensitive to vibration. Additionally, the surface error of the mirror is strongly increased when the vibration directions of the interferometer and the null lens are different. To reduce the alignment error and the surface error induced by vibration, the tower structure should be improved, to be insensitive to low-frequency vibration. Alternatively, optical measuring under stable conditions by vibration monitoring can improve the reliability of the surface error measurement.

On-Machine Measurement of an Optical Surface by Hartmann Test (하트만 방법에 의한 광학면의 기상측정)

  • 김용관;오창진;이응석;김옥현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.474-480
    • /
    • 2002
  • Aspheric optical lenses and mirrors are widely used in recent. It is more difficult to manufacture and measure the aspherical optics compared to conventional spherical ones. The interferometric optical test is common for the measurement of spherical optical surface. But the application of the interferometry to the measurement of aspheric surface is difficult because it needs a precise null corrector and very careful environmental conditions such as keeping constant temperature, humidity, atmospheric pressure and vibrations. To enhance productivity of optics manufacturing on-machine measurement and correction has been developed in this study. For practical applications, robustness of the measurement method to environments is more important. For the purpose an optical OMM(On-Machine Measurement) system has been developed using Shack-Hartmann test which has robustness to the environment. The wavefront has been reconstructed from the measured data using the primary aberration polynomial function by least square fitting. The measured result of the developed only system gives the maximum deviation only in 200 nm from the result measured by a commercial Fizeau interferometer Wyko 6000.

  • PDF

Optical Performance Degradation Effects by Fabrication Errors of Circular-type Computer Generated Holograms

  • Kim, Young-Gwang;Rhee, Hyug-Gyo;Ghim, Young-Sik
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1657-1662
    • /
    • 2018
  • A null test method which relies on a computer generated hologram (CGH) is widely used to measure a large aspheric surface. For precise measurements of the surface shape of an aspheric optics, the CGH must precisely generate a wavefront that can fit on the ideal surface shape of the aspheric optics. If fabrication errors arise in the CGH, an unwanted wavefront will be generated and the measuring result will lack trustworthiness. Thus far, there has been limited research on wavefronts generated by CGH using only linear-type binary grating models. In this study, a theoretical error model of a circular-type zone plate, the most commonly used types for CGH patterns, is suggested. The proposed error model is checked by simulations and experiments.

Optimal Shape Design of Dual Reflector Antenna Based on Genetic Algorithm (유전 알고리즘 기반의 이중 반사경 안테나 형상최적화 기법)

  • Park, Jung-Geun;Chung, Young-Seek;Kang, Won-June;Shin, Jin-Woo;So, Joon-Ho;Cheon, Chang-Yul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.5
    • /
    • pp.445-454
    • /
    • 2015
  • In this paper, we propose an optimal design method for a dual reflector antenna(DRA) using the Genetic algorithm. In order to reduce the computational burden during the optimal design, we exploit the iterative physical optics(IPO) to calculate the surface current distribution at each reflector antenna. To improve the accuracy, we consider the shadow effect by the structure and the coupling effect by the multi-reflection based on the iterative MFIE(Magnetic Field Integral Equation). To reduce the number of design variables and generate a smooth surface, we use the Bezier function with the control points, which become the design variables in this paper. We adopt the HPBW(Half Power Beam Width), the FNBW(First Null Beam Width), and the SLL(Side Lobe Level) as the objective or cost functions. To verify the results, we compare them with the those of the commercial tool.

Diffraction grating interferometer for null testing of aspheric surface with binary amplitude CGH (이진 컴퓨터 형성 홀로그램을 이용한 비구면 형상 측정용 위상편이 회절격자 간섭계)

  • 황태준;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.313-320
    • /
    • 2004
  • We present a null testing method fer aspheric surfaces, utilizing a phase-shifting diffraction grating interferometer along with a binary amplitude computer generated hologram (CGH). The binary amplitude CGH is designed to compensate for the wavefront between a point source and the aspheric surface under test. The fringe visibility of the grating interferometer is controlled easily by selecting suitable grating diffraction orders for the measurement and reference wavefronts or by optimizing the groove shape of the grating used. The binary amplitude CGH is designed by numerical analysis of ray tracing and fabricated using e-beam lithography for autostigmatic testing. Experimental results of a large-scale aspheric mirror surface are discussed to verify the measurement performance of the proposed diffraction grating interferometer.

Analysis of Axially Displaced Ellipse Gregorian Dual Reflector Antennas (축이동 그레고리안 이중 반사경 안테나의 해석)

  • 임성빈;최경국;최학근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1161-1169
    • /
    • 2003
  • In this paper, ADE(Axially Displaced Ellipse) Gregorian dual reflector antennas, which are the special form of Gregorian dual reflector antennas, were analyzed. In the procedure of antenna analysis, the aperture field distribution was obtained by using the geometrical optics and their far-field radiation characteristics were analyzed by using the aperture field method. The analysis results such as antenna efficiency, HPBW(Half Power Beam Width), FNBW(First Null Beam Width), and FSL(First Sidelobe Level) were presented as functions of edge taper and size of main reflector and subreflector. From the results in this paper, we could confirm that ADE reflector antennas have the different radiation characteristics from the classical dual reflector antennas.

Machining Accuracy for Large Optical Mirror using On-Machine Spherical Surface ]Referenced Shack-Hartmann System (On-Machine 구면기준 Shack-Hartmann 장치를 이용한 대형 반사경의 가공 정밀도 연구)

  • Hong Jong Hui;Oh Chang Jin;Lee Eung Suk;Kim Ock Hyn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.726-733
    • /
    • 2005
  • A spherical surface referenced Shack-Hartmann method is studied for inspecting machining accuracy of large concave mirror This method is so strong to the vibration environment for using as an on-machine inspection system during polishing process of large optics comparing with the interferometry. The measuring uncertainty of the system is shown as less than p-v 150 m. On-machine measured surface profile data with this method is used for feed back control of the polishing time or depth to improve the surface profile accuracy of large concave mirror. Also, the spherical surface referenced Shack-Hartmann method is useful for measuring aspheric such as parabolic or hyperbolic surface profile, comparing that the interferomehy needs a special null lens, which is to be a reference and difficult to fabricate.