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I. INTRODUCTION 

The geometrical theory of diffraction (GTD) [1] has played a 

prominent role in high-frequency analysis of electromagnetic 

scattering and diffraction. The asymptotic diffraction coeffici-

ents of a perfectly conducting wedge, which was rigorously de-

rived more than one century ago, laid the foundation of the 

GTD technique. Until now, however, there have been no ri-

gorous diffraction coefficients of penetrable wedges. As a detour, 

we performed the physical optics (PO) approximation on the lit 

boundary of a dielectric wedge [2]. Next, the correction to the 

PO diffraction coefficients was implemented by numerically 

calculating the non-uniform currents on its lit and shadow bo-

undaries [3, 4].  

Recently, the finite difference time domain (FDTD) method 

has been employed to calculate the diffraction coefficients of 

penetrable wedges numerically without any analytical treatment 

[5]. However, the fully numerical approach could not provide 

any physical understanding of the inherent features in the 

wedge diffraction. On the other hand, a systematic tracing of  

the geometrical rays, which are reflected and refracted on the 

shadow boundary of a penetrable wedge, was presented. This 

technique, called the hidden rays of diffraction (HRD) [6], pro-

vided more accurate diffraction coefficients of some canonical 

penetrable wedges [7-9] than the conventional PO solutions. 

In this paper, the physical background and fundamental issues 

of the HRD technique are reviewed in detail by reinterpreting 

the diffraction coefficients of a perfectly conducting wedge. 
 

II. PHYSICAL BACKGROUND 

For a wedge illuminated by a plane wave, its geometrical 

optics (GO) field is expressed by a finite sum of ordinary rays, 

which are incident, reflected, and refracted on the lit boundary. 

Here the term ‘ray’ denotes a plane wave with the same am-

plitude and propagation angle. In contrast, its PO solution is 

given by an integral of the diffraction coefficients along the 

Sommerfeld’s path P [10]. The PO diffraction coefficients con-

sist of the same number of cotangent functions as the ordinary 

rays. In asymptotic integration, the P path is deformed into the 

steepest decent path (SDP) [10] and the closed P-SDP path.  
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Then the integrations of the PO diffraction coefficients along 

the contour P-SDP and the SDP are equal to the GO term and 

the edge-diffracted field, respectively. Therefore, there is one-

to-one correspondence between the ordinary rays of its GO 

field and the diffraction coefficients of its PO field [2, 6]. It 

causes the PO diffraction coefficients to be constructed rou-  

tinely only from the conventional ray-tracing data. 

In general, however, the PO field cannot satisfy the boundary 

condition at the wedge interface and the edge condition at the 

wedge tip. The GO field is the perfect first term of the asymp-

totic series solution in high frequency. The error of the PO field 

is then generated by the PO diffraction coefficients as the im-

perfect second term. From the traditional point of view, the 

error of the PO diffraction coefficients could be corrected by 

adding the non-uniform currents on wedge interfaces. In par-

ticular, both non-uniform currents on the lit and shadow boun-

daries are required for the same physical reason and are ex-

pressed in the same mathematical form. 

The starting line of the HRD technique was the comparison 

between the PO and exact diffraction coefficients of a perfectly 

conducting wedge. Consider an E-polarized plane wave inci-

dent only on its lit boundary at c  , as shown in Fig. 1. In 

this case, the PO solution ( ) ( , )POu    and exact total field 
( ) ( , )exu    were expressed in the same asymptotic integral 

form [10] as 
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In Eq. (1), the GO field ( ) ( , )GOu    is well known as 
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Fig. 1. A perfectly conducting wedge illuminated by an E-polarized 

plane wave for i d    . 

x

y

①

θi.d

θr.d

θi.c

θr.c

①

θc

sd

sc

θd

s0

Rc

Rd

θi
 

Fig. 2. The propagation angles of the ordinary rays on the lit boundary 

and the hidden rays on the shadow boundary for i d    . 

 

where the angular window function W is defined by 
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The PO diffraction coefficients 1( )f w  are written by 
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The exact diffraction coefficients 1( )p w  are given by  
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         (6b) 
 

Each pole of the cotangent functions in Eqs. (4) and (6) 

denotes the propagation angle of the corresponding ray, as 

shown in Fig. 2. It should be noted that the propagation angle 

of a ray in Fig. 2 is accounted for by the sum of the angle of its 

reference line and the variation angle of its angular arrow. 

When the direction of the angular arrow is counterclockwise 

(clockwise), the variation angle is considered as a positive (ne-

gative) value. Both reflection amplitudes cR  and dR  are equal 

to -1 in this case. 

Two cotangent functions in Eq. (6a) can be constructed from 

the PO diffraction coefficients in Eq. (4) only if the angular 

period of the cotangent functions is adjusted from 2  to 

2 , where   is obtained from the edge condition [11] at 

the wedge tip as 
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Considering the one-to-one correspondence between the or-

dinary rays and the PO diffraction coefficients, one may rou-

tinely construct two cotangent functions in Eq. (6a) only from 

the ordinary ray-tracing data and the edge condition. This leads 

us to conclude that the ordinary rays on the lit boundary ge-

nerate the first two cotangent functions in Eq. (5). 

In Fig. 1, the incident field cannot reach the shadow bo-

undary at d  . Therefore, no actual reflection occurs on the 

shadow boundary. However, the exact solution in Eq. (5) 

consists of four cotangent functions, among which the last two 

should directly relate to the reflection on the shadow boundary. 

In a pure mathematical way, Fig. 2 illustrates the propagation 

angles and amplitudes of the incident and reflected rays on the 

d   boundary. According to traditional optics, however, 

there is no systematic way to trace the geometrical rays on the 

shadow boundary. Therefore, it is impossible to see these rays in 

the physical region. Thus, these extraordinary rays are called 

hidden rays [5]. 
 

III. FUNDAMENTAL ISSUES 

Several arguing points are posed vis-a-vis the so-called 

hidden rays. The first issue is how to infer the physical existence 

of the hidden rays on the shadow boundary from the ma-

thematical expression in Eq. (6b). In case of Fig. 1, not only the 

lit boundary at c   but also its edge as the end-point of the 

lit boundary are illuminated simultaneously by the incident 

plane wave. At first, the ordinary rays on the lit boundary 

provide the GO field. According to the GTD, the diffracted 

field in a wedge may be interpreted as the field radiated from 

the induced currents at its edge. The GO field at the edge as the 

end-point of the lit boundary then generates the corresponding 

edge-diffracted field, as shown in Eq. (6a). 

 

 
Fig. 3. The propagation angles of the ordinary rays on both boundaries 

for d i c    . 
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Fig. 4. A perfectly conducting wedge illuminated by an E-polarized 

plane wave for i d    . 

 
Naturally, the incident wave in Fig. 1 cannot reach the sha-

dow boundary at d  . Thus, no ordinary rays on the shadow 

boundary cause the corresponding GO field to be zero. How-

ever, the edge as the end-point of the shadow boundary is 

illuminated by the incident plane wave. This implies that the 

edge-diffracted field radiated from the induced currents at the 

edge as the end-point of the shadow boundary cannot become 

zero, as shown in Eq. (6b). In a reverse sense, one may guess 

that the diffraction coefficients in Eq. (6b) are also constructed 

from the hidden rays one by one. 

The above inference leads us to argue such the second issue as 

where the hidden rays exist. The poles of the two cotangent 

functions in Eq. (6b), which are directly equal to the pro-

pagation angles of the two hidden rays in Fig. 2, are well known 

as 
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One cannot intuitively divine the physical meaning of the 

angles in Eq. (8). As a detour, consider that both boundaries of 

the wedge in Fig. 1 are illuminated by the incident plane wave 

for d i c    . The ordinary ray-tracing result in this case is 

shown in Fig. 3. It is an interesting feature that the propagation 

angles of two ordinary rays on the d   boundary are also 

expressed by Eq. (8). In other words, hidden rays on a shadow 

boundary can be traced according to the same ray-tracing rule 

when the shadow boundary is illuminated by the plane wave 

with a different incident angle. 

The third issue may be how to easily implement the vi-

sualization of the hidden ray tracing on the shadow boundary. 

As suggested in [6], a supplementary boundary was introduced 

by rotating the shadow boundary by 180° toward the air region. 
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Then, as shown in Fig. 4, the incident plane wave can be 

incident on the supplementary boundary corresponding to the 

shadow boundary. It should be noted that the angle of the 

supplementary boundary is not d   but d  because its in-

troduction is only for the visualization of the hidden ray tracing. 

The last issue is strongly related to the angular period of the 

diffraction coefficients. The PO cotangent functions in Eq. (4) 

have the angular period 2 . In contrast, the angular period of 

the exact diffraction coefficients increases up to 2  because 

according to Eq. (7),   is a positive real value larger than 1 

but less than 2. The induced currents on the lit boundary then 

generate the diffraction coefficients 1 ( )cp w  in Eq. (6a), as sh-

own in Fig. 5. Because the angular period of 1 ( )cp w  is 2 , 

its angular distribution range should be down to 2c   . On 

the other hand, the diffraction coefficients 1 ( )dp w  generated 

from the induced currents on the shadow boundary should be 

distributed up to 2d  . 

The physical air region 0S  in Fig. 1 is [ , ]d c  . Based on 

the formulation of dual integral equations [2], the concept of 

the complementary air region was introduced [6]. The com-

plementary air region (0)
cS  is defined in the angular range of 

( , 2 ]c   or ( 2 , 0]c   where the original conductor is re-

placed by air. In the same manner, (0)
dS  denotes the other 

complementary air region in [0, )d  or [2 , 2 )d   . For 

convenience, the physical and complementary regions are li-

mited to [0, 2 ] . The exact diffraction coefficients are then 

expressed in different forms as  
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In particular, one may easily prove that the exact diffraction 

coefficients in two complementary air regions of [0, )d  and 

( , 2 ]c   become zero, as shown in Eq. (9). This property is 

called the null-field condition in the complementary region. 
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Fig. 5. Angular distribution of the common physical air region 0S  in 

Fig. 1 and two complementary air regions (0)
cS  and (0)

dS . 

 
Fig. 6. Standard procedure of the hidden rays of diffraction (HRD) 

technique. 

 

This null-field condition has been used as a criterion to check 

the accuracy of the HRD solution to a wedge [6].   

All the above properties formed a framework for implemen-

ting the HRD technique to solve a penetrable wedge problem. 

The standard procedure of the HRD technique, as illustrated 

well in Fig. 6, has provided more accurate diffraction coeffi-

cients of some canonical wedges [6-9]. 

 

IV. CONCLUSION 

In this paper, the physical existence and tracing rule of the 

hidden rays reflected and refracted on the shadow boundary are 

explained in detail by comparing the PO and the exact di-

ffraction coefficients of a perfectly conducting wedge. The vi-

sualization of the hidden ray tracing on the shadow boundary is 

easily implemented by introducing its supplementary boundary. 

The null-field condition in the complementary region is also 

explained in detail. Compared to the physical theory of di-

ffraction (PTD) [12], the HRD technique provides not only a 

pure analytic form of the diffraction coefficients of some cano-

nical wedges but also a new aspect of the physical understanding 

of diffraction by a wedge. It is expected that this brief review will 

be helpful in applying the HRD technique to a wide range of 

diffraction problems. 
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