• 제목/요약/키워드: Nrf2 activation

검색결과 166건 처리시간 0.019초

Cytoprotective Effect of Makgeolli Lees on Paraquat Induced Oxidative Stress in A549 Cells via Activation of NRF2 and Antioxidant Genes

  • Jeon, Miso;Rahman, Naimur;Kim, Yong-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권2호
    • /
    • pp.277-286
    • /
    • 2016
  • Makgeolli lees (ML) has several physiological effects such as antioxidant, antidiabetic, and anticancer properties, but its biological functions have not been determined definitively. Here, we tested whether ML has a cytoprotective effect on paraquat (PQ)-induced oxidative stress in the human lung carcinoma cell line A549. At 0.1 mg/ml ML, viability of PQ-exposed A549 cells was restored by 12.4%, 18.5%, and 48.6% after 24, 48, and 72 h, respectively. ML also reduced production of the intracellular reactive oxygen species (ROS) that were generated by PQ treatment. Further experiments revealed that ML treatment enhanced the expression and nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) as well as ARE-GFP reporter activity. ML treatment also effectively increased the expression of NRF2's target genes NAD(P)H dehydrogenase quinone 1 (NQO1) and heme oxygenase 1 (HO-1). Moreover, we found that expression of cytoprotective genes, including glutathione peroxidases (GPXs), superoxide dismutase (SOD1), catalase (CAT), peroxiredoxin 3 (PRDX3), and peroxiredoxin 4 (PRDX4), was greatly enhanced by treatment with ML during PQ exposure. Taken together, the data suggest that treatment of PQ-exposed A549 cells with ML ameliorates cytotoxicity through induction of NRF2 expression and its target genes HO-1, NQO1, and other antioxidant genes. Thus, ML may serve as a functional food applicable to ROS-mediated human diseases.

Investigation of Anti-inflammatory and Anti-oxidative Activities of Lonicerae Flos, Citri Pericarpium and Violae Herba Complex (LCVC)

  • Hong Kyoung Kim
    • 대한한의학회지
    • /
    • 제43권4호
    • /
    • pp.52-73
    • /
    • 2022
  • Objectives: The anti-inflammatory and anti-oxidative activities of LCVC (Lonicerae Flos, Citri Pericarpium and Violae Herba Complex) have not been fully elucidated. The purpose of this study was to investigate the mechanisms underlying these effects in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Methods: The evaluation of the anti-oxidative activity of LCVC was completed via DPPH and ABTS radical scavenging capacity, FRAP assay, measurement of polyphenol and flavonoid, assessment of ROS and NO levels in LPS-induced RAW 264.7 cells. The anti-inflammatory activity was defined by measuring the production of biomarkers (PGE2, IL-1B, IL-6 and TNF-𝛼), proteins (ERK, JNK, P38, Nrf2, Keap1, HO-1 and NQO1) and expressions of genes (iNOS, COX-2, IL-1𝛽, IL-6, TNF-𝛼, Nrf2, Keap1, HO-1 and NQO1) in LPS-induced RAW 264.7 cells. Results: LCVC have polyphenol and flavonoid contents. The results of DPPH and ABTS free radical scavenging capacity and FRAP assay showed that the anti-oxidative activity was increased. Production of ROS, NO, IL-6, TNF-𝛼, mRNA expressions of IL-1𝛽, IL-6, TNF-𝛼, Keap1, iNOS and COX-2 were decreased, and NQO1, Nrf2, and HO-1 were increased. In protein expression, JNK and Keap1 were decreased, NQO1, Nrf2 and HO-1 were increased, and no relationships were observed with the ERK and P38 by LCVC. Conclusions: These results suggest that LCVC may offer protective effects against LPS-induced inflammatory and oxidative responses through attenuating Nrf2/HO-1 pathway and MAPKs pathway. Therefore, we propose that LCVC has anti-inflammatory and anti-oxidative activities that have therapeutic potential in the treatment of inflammatory and oxidative disorders caused by the over-activation of macrophages.

비알코올성 지방간 세포 모델에서 곤포의 효능과 기전 연구 (Research on Anti-lipogenic Effect and Underlying Mechanism of Laminaria japonica on Experimental Cellular Model of Non-alcoholic Fatty Liver Disease)

  • 김소연;권정남;이인;홍진우;최준용;박성하;권민정;주명수;한창우
    • 대한한방내과학회지
    • /
    • 제35권2호
    • /
    • pp.175-183
    • /
    • 2014
  • Objectives : We tried to uncover the anti-lipogenic effect and underlying mechanism of Laminaria japonica on an experimental cellular model of non-alcoholic fatty liver disease. Methods : Ethanol extract of Laminaria japonica (LJ) was prepared. Intracellular lipid content of palmitate-treated HepG2 cells was evaluated with or without LJ treatment. We measured the effects of LJ on liver X receptor ${\alpha}$ ($LXR{\alpha}$) and sterol regulatory element-binding transcription factor-1c (SREBP-1c) expression, transcription level of lipogenic genes, including acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1), and nuclear factor erythroid 2-related factor 2 (Nrf2) activation in HepG2 cells. Results : LJ markedly attenuated palmitate-induced intracellular lipid accumulation in HepG2 cells. LJ suppressed $LXR{\alpha}$-dependent SREBP-1c activation, and SREBP-1c mediated induction of ACC, FAS, and SCD-1. Furthermore, LJ activated Nrf2, which plays an important cytoprotective role in non-alcoholic fatty liver disease. Conclusions : Our study suggests that LJ has the potential to alleviate hepatic lipid accumulation, and this effect was mediated by inhibiting the $LXR{\alpha}$-SREBP-1c pathway that leads to hepatic steatosis. In addition, the anti-lipogenic potential may, at least in part, be associated with activation of Nrf2.

쿠퍼 세포에서 Nrf2 활성화 매개 죽력의 염증 및 인플라마좀 억제 효능 (Anti-inflammation and Anti-inflammasome Effects of Bambusae Caulis in Liquamen mediated by Nrf2 Activation in Kupffer cells)

  • 양지혜
    • 대한한의학방제학회지
    • /
    • 제31권4호
    • /
    • pp.253-264
    • /
    • 2023
  • Objectives : Bambusae Caulis in Liquamen (BCL), a traditional herbal medicine, is a distilled product of condensation from the burning of fresh bamboo stems. We previously identified the anti-oxidant capacity of BCL in hepatocytes and suggested that BCL is a promising therapeutic candidate for treating oxidative stress-induced hepatocellular damage. Despite the importance of the role played by Kupffer cells in liver disease, the efficacy of BCL on Kupffer cells is unclear. Therefore, this study aimed to determine whether BCL could suppress LPS-induced inflammation and LPS+ATP-induced inflammasomes in Kupffer cells. Methods : We used ImKCs, a murine immortalized Kupffer cell line to examined whether BCL inhibited LPS-induced inflammation response and oxidave stress. And, we prepared a total of 18 L of BCL, purchased from Bamboo Forest Foods Co., Ltd. (648 Samdari, Damyang-eup, Damyang-gun, Jeollanam-do, Republic of Korea), was concentrated using a decompression concentrator. Result : The LPS-induced release of inflammatory cytokines was abolished by BCL treatment. Also, BCL treatment suppressed the LPS+ATP-induced expression of inflammasome proteins (NLRP3, IL-1, and IL-18), and inhib β ited the release of IL-1 . BCL decreased LPS-or LPS+ATP-induc β ed reactive oxygen species production. In addition, BCL increased nuclear translocation of Nrf2 and the expression of HO-1 in a time-dependent manner. Conclusion : These results suggest the efficacy of BCL with respect to its anti-inflammatory and anti-inflammasome effects mediated by Nrf2 in Kupffer cells.

Nrf2 and Keap1 Regulation of Antioxidant and Phase II Enzyme Genes

  • Yamamoto, M.
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Current Trends in Toxicological Sciences
    • /
    • pp.24-42
    • /
    • 2002
  • Antioxidant responsive element (ARE) mediates the transcriptional activation of the genes encoding phase II drug metabolizing enzymes and antioxidative stress genes. The ARE consensus sequence shows high similarity to NF-E2 binding sequence, a cisacting erythroid gene regulatory element.(omitted)

  • PDF

Mountain-cultivated ginseng protects against cognitive impairments in aged GPx-1 knockout mice via activation of Nrf2/ChAT/ERK signaling pathway

  • Bao Trong Nguyen;Eun-Joo Shin;Ji Hoon Jeong;Naveen Sharma;Ngoc Kim Cuong Tran;Yen Nhi Doan Nguyen;Dae-Joong Kim;Myung Bok Wie;Yi Lee;Jae Kyung Byun;Sung Kwon Ko;Seung-Yeol Nah;Hyoung-Chun Kim
    • Journal of Ginseng Research
    • /
    • 제47권4호
    • /
    • pp.561-571
    • /
    • 2023
  • Background: Escalating evidence shows that ginseng possesses an antiaging potential with cognitive enhancing activity. As mountain cultivated ginseng (MCG) is cultivated without agricultural chemicals, MCG has emerged as a popular herb medicine. However, little is known about the MCG-mediated pharmacological mechanism on brain aging. Methods: As we demonstrated that glutathione peroxidase (GPx) is important for enhancing memory function in the animal model of aging, we investigated the role of MCG as a GPx inducer using GPx-1 (a major type of GPx) knockout (KO) mice. We assessed whether MCG modulates redox and cholinergic parameters, and memory function in aged GPx-1 knockout KOmice. Results: Redox burden of aged GPx-1 KO mice was more evident than that of aged wild-type (WT) mice. Alteration of Nrf2 DNA binding activity appeared to be more evident than that of NFκB DNA binding activity in aged GPx-1 KO mice. Alteration in choline acetyltransferase (ChAT) activity was more evident than that in acetylcholine esterase activity. MCG significantly attenuated reductions in Nrf2 system and ChAT level. MCG significantly enhanced the co-localization of Nrf2-immunoreactivity and ChAT-immunoreactivity in the same cell population. Nrf2 inhibitor brusatol significantly counteracted MCG-mediated up-regulation in ChAT level and ChAT inhibition (by k252a) significantly reduced ERK phosphorylation by MCG, suggesting that MCG might require signal cascade of Nrf2/ChAT/ERK to enhance cognition. Conclusion: GPx-1 depletion might be a prerequisite for cognitive impairment in aged animals. MCG-mediated cognition enhancement might be associated with the activations of Nrf2, ChAT, and ERK signaling cascade.

Heme Oxygenase-1 Determines the Differential Response of Breast Cancer and Normal Cells to Piperlongumine

  • Lee, Ha-Na;Jin, Hyeon-Ok;Park, Jin-Ah;Kim, Jin-Hee;Kim, Ji-Young;Kim, BoRa;Kim, Wonki;Hong, Sung-Eun;Lee, Yun-Han;Chang, Yoon Hwan;Hong, Seok-Il;Hong, Young Jun;Park, In-Chul;Surh, Young-Joon;Lee, Jin Kyung
    • Molecules and Cells
    • /
    • 제38권4호
    • /
    • pp.327-335
    • /
    • 2015
  • Piperlongumine, a natural alkaloid isolated from the long pepper, selectively increases reactive oxygen species production and apoptotic cell death in cancer cells but not in normal cells. However, the molecular mechanism underlying piperlongumine-induced selective killing of cancer cells remains unclear. In the present study, we observed that human breast cancer MCF-7 cells are sensitive to piperlongumine-induced apoptosis relative to human MCF-10A breast epithelial cells. Interestingly, this opposing effect of piperlongumine appears to be mediated by heme oxygenase-1 (HO-1). Piperlongumine upregulated HO-1 expression through the activation of nuclear factor-erythroid-2-related factor-2 (Nrf2) signaling in both MCF-7 and MCF-10A cells. However, knockdown of HO-1 expression and pharmacological inhibition of its activity abolished the ability of piperlongumine to induce apoptosis in MCF-7 cells, whereas those promoted apoptosis in MCF-10A cells, indicating that HO-1 has anti-tumor functions in cancer cells but cytoprotective functions in normal cells. Moreover, it was found that piperlongumine-induced Nrf2 activation, HO-1 expression and cancer cell apoptosis are not dependent on the generation of reactive oxygen species. Instead, piperlongumine, which bears electrophilic ${\alpha},{\beta}$-unsaturated carbonyl groups, appears to inactivate Kelch-like ECH-associated protein-1 (Keap1) through thiol modification, thereby activating the Nrf2/HO-1 pathway and subsequently upregulating HO-1 expression, which accounts for piperlongumine-induced apoptosis in cancer cells. Taken together, these findings suggest that direct interaction of piperlongumine with Keap1 leads to the upregulation of Nrf2-mediated HO-1 expression, and HO-1 determines the differential response of breast normal cells and cancer cells to piperlongumine.

The Stem Bark of Kalopanax pictus Exhibits Anti-inflammatory Effect through Heme Oxygenase-1 Induction and NF-${\kappa}B$ Suppression

  • Bang, Soo-Young;Park, Ga-Young;Park, Sun-Young;Kim, Ji-Hee;Lee, Yun-Kyoung;Lee, Sang-Joon;Kim, Young-Hee
    • IMMUNE NETWORK
    • /
    • 제10권6호
    • /
    • pp.212-218
    • /
    • 2010
  • Backgroud: The stem bark of Kalopanax pictus (KP) has been used in traditional medicine to treat rheumatoidal arthritis, neurotic pain and diabetes mellitus in China and Korea. In this study, the mechanism responsible for anti-inflammatory effects of KP was investigated. Methods: We examined the effects of KP on NO production, nitric oxide synthase (iNOS) and HO-1 expression, NF-${\kappa}B$, Nrf2 and MAPK activation in mouse peritoneal macrophages. Results: The aqueous extract of KP inhibited LPS-induced NO secretion as well as inducible iNOS expression, without affecting cell viability. KP suppressed LPS-induced NF-${\kappa}B$ activation, phosphorylation and degradation of $I{\kappa}B-{\alpha}$, phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Furthermore, KP induced HO-1 expression and Nrf2 nuclear translocation. Conclusion: These results suggest that KP has the inhibitory effects on LPS-induced NO production in macrophages through NF-${\kappa}B$ suppression and HO-1 induction.

THE ESSENTIAL ROLE OF PI3-KINASE IN THE INDUCTION OF GLUTATHIONE S-TRANSFERASE BY TERT-BUTYLHYDROQUINONE AND OLTIPRAZ: DIFFERENTIAL EFFECTS ON Nrf2/ARE ACTIVATION

  • Kim, Sang-Geon;Kang, Keon-Wook
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Signal transduction in Toxicology
    • /
    • pp.96-106
    • /
    • 2001
  • The phase II detoxifying enzymes are inducible by a variety of compounds and play an essential role for the protection of cells. Many of chemoprotective agents trigger cellular signals for the phase II enzyme induction, which subsequently activate gene transcription through ARE activation.(omitted)

  • PDF