DOI QR코드

DOI QR Code

Anti-inflammation and Anti-inflammasome Effects of Bambusae Caulis in Liquamen mediated by Nrf2 Activation in Kupffer cells

쿠퍼 세포에서 Nrf2 활성화 매개 죽력의 염증 및 인플라마좀 억제 효능

  • Ji Hye Yang (College of Korean Medicine, Dongshin University)
  • 양지혜 (동신대학교 한의과대학 한의예과)
  • Received : 2023.10.31
  • Accepted : 2023.11.12
  • Published : 2023.11.30

Abstract

Objectives : Bambusae Caulis in Liquamen (BCL), a traditional herbal medicine, is a distilled product of condensation from the burning of fresh bamboo stems. We previously identified the anti-oxidant capacity of BCL in hepatocytes and suggested that BCL is a promising therapeutic candidate for treating oxidative stress-induced hepatocellular damage. Despite the importance of the role played by Kupffer cells in liver disease, the efficacy of BCL on Kupffer cells is unclear. Therefore, this study aimed to determine whether BCL could suppress LPS-induced inflammation and LPS+ATP-induced inflammasomes in Kupffer cells. Methods : We used ImKCs, a murine immortalized Kupffer cell line to examined whether BCL inhibited LPS-induced inflammation response and oxidave stress. And, we prepared a total of 18 L of BCL, purchased from Bamboo Forest Foods Co., Ltd. (648 Samdari, Damyang-eup, Damyang-gun, Jeollanam-do, Republic of Korea), was concentrated using a decompression concentrator. Result : The LPS-induced release of inflammatory cytokines was abolished by BCL treatment. Also, BCL treatment suppressed the LPS+ATP-induced expression of inflammasome proteins (NLRP3, IL-1, and IL-18), and inhib β ited the release of IL-1 . BCL decreased LPS-or LPS+ATP-induc β ed reactive oxygen species production. In addition, BCL increased nuclear translocation of Nrf2 and the expression of HO-1 in a time-dependent manner. Conclusion : These results suggest the efficacy of BCL with respect to its anti-inflammatory and anti-inflammasome effects mediated by Nrf2 in Kupffer cells.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (No. 2021R1C1C1006014), a science and technology project that opens the future of the region (No. 2021-DD-UP-0380), and the Ministry of Science and ICT (No. 2022M3A9 B6017813).

References

  1. Nguyen-Lefebvre AT, Horuzsko A. Kupffer cell metabolism and function. Journal of enzymology and metabolism. 2015;1(1).
  2. Wen Y, Lambrecht J, Ju C, Tacke F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cellular & molecular immunology. 2021;18(1):45-56. https://doi.org/10.1038/s41423-020-00558-8
  3. Zhang L, Bansal MB. Role of Kupffer cells in driving hepatic inflammation and fibrosis in HIV infection. Frontiers in Immunology. 2020; 11:1086.
  4. Kolios G, Valatas V, Kouroumalis E. Role of Kupffer cells in the pathogenesis of liver disease. World journal of gastroenterology: WJG. 2006;12(46):7413.
  5. Swanson KV, Deng M, Ting JP-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews Immunology. 2019;19(8):477-89. https://doi.org/10.1038/s41577-019-0165-0
  6. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. International journal of molecular sciences. 2019;20(13):3328.
  7. Wu X, Dong L, Lin X, Li J. Relevance of the NLRP3 inflammasome in the pathogenesis of chronic liver disease. Frontiers in immunology. 2017;8:1728.
  8. Canton M, S nchez-Rodriguez R, Spera I, Venegas FC, Favia M, Viola A, et al. Reactive oxygen species in macrophages: sources and targets. Frontiers in immunology. 2021;12:734229.
  9. Herb M, Schramm M. Functions of ROS in macrophages and antimicrobial immunity. Antioxidants. 2021;10(2):313.
  10. Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circulation research. 2018;122(6):877-902. https://doi.org/10.1161/CIRCRESAHA.117.311401
  11. Harijith A, Ebenezer DL, Natarajan V. Reactive oxygen species at the crossroads of inflammasome and inflammation. Frontiers in physiology. 2014;5:352.
  12. Ngo V, Duennwald ML. Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants. 2022;11(12):2345.
  13. Bellezza I, Giambanco I, Minelli A, Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2018;1865(5):721-33. https://doi.org/10.1016/j.bbamcr.2018.02.010
  14. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cellular and molecular life sciences. 2016;73:3221-47. https://doi.org/10.1007/s00018-016-2223-0
  15. Al-Amarat W, Abukhalil MH, Alruhaimi RS, Alqhtani HA, Aldawood N, Alfwuaires MA, et al. Upregulation of Nrf2/HO-1 signaling and attenuation of oxidative stress, inflammation, and cell death mediate the protective effect of apigenin against cyclophosphamide hepatotoxicity. Metabolites. 2022;12(7):648.
  16. Orozco LD, Kapturczak MH, Barajas B, Wang X, Weinstein MM, Wong J, et al. Heme oxygenase-1 expression in macrophages plays a beneficial role in atherosclerosis. Circulation research. 2007;100(12):1703-11. https://doi.org/10.1161/CIRCRESAHA.107.151720
  17. Huang J, Shen X-D, Yue S, Zhu J, Gao F, Zhai Y, et al. Adoptive transfer of heme oxygenase-1 (HO-1)-modified macrophages rescues the nuclear factor erythroid 2-related factor (Nrf2) antiinflammatory phenotype in liver ischemia/reperfusion injury. Molecular Medicine. 2014;20:448-55. https://doi.org/10.2119/molmed.2014.00103
  18. Bender D, Hildt E. Effect of hepatitis viruses on the Nrf2/Keap1-signaling pathway and its impact on viral replication and pathogenesis. International journal of molecular sciences. 2019;20(18):4659.
  19. Goyal AK, Brahma BK. Antioxidant and nutraceutical potential of bamboo: an overview. International Journal of Fundamental and Applied Sciences (IJFAS). 2014;3(1):2-10. https://doi.org/10.59415/ijfas.v3i1.55
  20. Yang JH. Cytoprotective Effect of Bambusae caulis in Liquamen by Blocking Oxidative Stress in Hepatocytes. Molecules. 2023;28(15):5862.
  21. Kim JM, Choi MH, Yang JH. Cinnamomum japonicum Siebold Branch Extracts Attenuate NO and ROS Production via the Inhibition of p38 and JNK Phosphorylation. Molecules. 2023;28(4).
  22. Bertani B, Ruiz N. Function and biogenesis of lipopolysaccharides. EcoSal Plus. 2018;8(1):10.1128/ecosalplus. ESP-0001-2018.
  23. Marrocco A, Ortiz LA. Role of metabolic reprogramming in pro-inflammatory cytokine secretion from LPS or silica-activated macrophages. Frontiers in Immunology. 2022;13:936167.
  24. Kim EY, Moudgil KD. Regulation of autoimmune inflammation by pro-inflammatory cytokines. Immunology letters. 2008;120(1-2):1-5. https://doi.org/10.1016/j.imlet.2008.07.008
  25. Hamilton T, Ohmori Y, Tebo J, Kishore R. Regulation of macrophage gene expression by pro-and anti-inflammatory cytokines. Pathobiology. 2000;67(5-6):241-4. https://doi.org/10.1159/000028101
  26. Huang Y, Xu W, Zhou R. NLRP3 inflammasome activation and cell death. Cellular & molecular immunology. 2021;18(9):2114-27. https://doi.org/10.1038/s41423-021-00740-6
  27. Prochnicki T, Mangan MS, Latz E. Recent insights into the molecular mechanisms of the NLRP3 inflammasome activation. F1000Research. 2016;5.
  28. Abais JM, Xia M, Zhang Y, Boini KM, Li P-L. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxidants & redox signaling. 2015;22(13):1111-29. https://doi.org/10.1089/ars.2014.5994
  29. Ryter SW, Choi AM. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Translational Research. 2016;167(1):7-34. https://doi.org/10.1016/j.trsl.2015.06.011
  30. Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE. Kupffer cells in the liver. Comprehensive Physiology. 2013;3(2):785.
  31. Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver International. 2006;26(10):1175-86. https://doi.org/10.1111/j.1478-3231.2006.01342.x
  32. Helfinger V, Palfi K, Weigert A, Schroder K. The NADPH oxidase Nox4 controls macrophage polarization in an NF κB-dependent manner. Oxidative Medicine and Cellular Longevity. 2019;2019.
  33. Kim SY, Jeong J-M, Kim SJ, Seo W, Kim M-H, Choi W-M, et al. Pro-inflammatory hepatic macrophages generate ROS through NADPH oxidase 2 via endocytosis of monomeric TLR4-MD2 complex. Nature communications. 2017;8(1):2247.
  34. Zha Q-B, Wei H-X, Li C-G, Liang Y-D, Xu L-H, Bai W-J, et al. ATP-induced inflammasome activation and pyroptosis is regulated by AMP-activated protein kinase in macrophages. Frontiers in Immunology. 2016;7:597.
  35. Gombault A, Baron L, Couillin I. ATP release and purinergic signaling in NLRP3 inflammasome activation. Front Immunol. 2012;3:414.
  36. Zhao S, Chen F, Yin Q, Wang D, Han W, Zhang Y. Reactive Oxygen Species Interact With NLRP3 Inflammasomes and Are Involved in the Inflammation of Sepsis: From Mechanism to Treatment of Progression. Front Physiol. 2020;11:571810.
  37. Hurtado-Navarro L, Angosto-Bazarra D, Pelegrin P, Baroja-Mazo A, Cuevas S. NLRP3 inflammasome and pyroptosis in liver pathophysiology: The emerging relevance of Nrf2 inducers. Antioxidants. 2022;11(5):870.
  38. Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nature communications. 2016;7(1):11624.
  39. Liu X, Zhang X, Ding Y, Zhou W, Tao L, Lu P, et al. Nuclear Factor E2-Related Factor-2 Negatively Regulates NLRP3 Inflammasome Activity by Inhibiting Reactive Oxygen Species-Induced NLRP3 Priming. Antioxid Redox Signal. 2017;26(1):28-43. https://doi.org/10.1089/ars.2015.6615