DOI QR코드

DOI QR Code

Heme Oxygenase-1 Determines the Differential Response of Breast Cancer and Normal Cells to Piperlongumine

  • Lee, Ha-Na (KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences) ;
  • Jin, Hyeon-Ok (KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences) ;
  • Park, Jin-Ah (KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences) ;
  • Kim, Jin-Hee (KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences) ;
  • Kim, Ji-Young (KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences) ;
  • Kim, BoRa (KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences) ;
  • Kim, Wonki (College of Pharmacy, Seoul National University) ;
  • Hong, Sung-Eun (Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences) ;
  • Lee, Yun-Han (Department of Radiation Oncology, College of Medicine, Yonsei University) ;
  • Chang, Yoon Hwan (Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences) ;
  • Hong, Seok-Il (Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences) ;
  • Hong, Young Jun (Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences) ;
  • Park, In-Chul (Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences) ;
  • Surh, Young-Joon (College of Pharmacy, Seoul National University) ;
  • Lee, Jin Kyung (KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences)
  • Received : 2014.09.02
  • Accepted : 2014.12.22
  • Published : 2015.04.30

Abstract

Piperlongumine, a natural alkaloid isolated from the long pepper, selectively increases reactive oxygen species production and apoptotic cell death in cancer cells but not in normal cells. However, the molecular mechanism underlying piperlongumine-induced selective killing of cancer cells remains unclear. In the present study, we observed that human breast cancer MCF-7 cells are sensitive to piperlongumine-induced apoptosis relative to human MCF-10A breast epithelial cells. Interestingly, this opposing effect of piperlongumine appears to be mediated by heme oxygenase-1 (HO-1). Piperlongumine upregulated HO-1 expression through the activation of nuclear factor-erythroid-2-related factor-2 (Nrf2) signaling in both MCF-7 and MCF-10A cells. However, knockdown of HO-1 expression and pharmacological inhibition of its activity abolished the ability of piperlongumine to induce apoptosis in MCF-7 cells, whereas those promoted apoptosis in MCF-10A cells, indicating that HO-1 has anti-tumor functions in cancer cells but cytoprotective functions in normal cells. Moreover, it was found that piperlongumine-induced Nrf2 activation, HO-1 expression and cancer cell apoptosis are not dependent on the generation of reactive oxygen species. Instead, piperlongumine, which bears electrophilic ${\alpha},{\beta}$-unsaturated carbonyl groups, appears to inactivate Kelch-like ECH-associated protein-1 (Keap1) through thiol modification, thereby activating the Nrf2/HO-1 pathway and subsequently upregulating HO-1 expression, which accounts for piperlongumine-induced apoptosis in cancer cells. Taken together, these findings suggest that direct interaction of piperlongumine with Keap1 leads to the upregulation of Nrf2-mediated HO-1 expression, and HO-1 determines the differential response of breast normal cells and cancer cells to piperlongumine.

Keywords

References

  1. Alam, J., Stewart, D., Touchard, C., Boinapally, S., Choi, A.M., and Cook, J.L. (1999). Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J. Biol.Chem. 274, 26071-26078. https://doi.org/10.1074/jbc.274.37.26071
  2. Bae, J., Lee, D., Kim, Y.K., Gil, M., Lee, J.Y., and Lee, K.J. (2013). Berberine protects 6-hydroxydopamine-induced human dopaminergic neuronal cell death through the induction of heme oxygenase-1. Mol. Cells 35, 151-157. https://doi.org/10.1007/s10059-013-2298-5
  3. Bauer, M., and Bauer, I. (2002). Heme oxygenase-1: Redox regulation and role in the hepatic response to oxidative stress. Antioxid. Redox Signal. 4, 749-758. https://doi.org/10.1089/152308602760598891
  4. Becker, J.C., Fukui, H., Imai, Y., Sekikawa, A., Kimura, T., Yamagishi, H., Yoshitake, N., Pohle, T., Domschke, W., and Fujimori, T. (2007). Colonic expression of heme oxygenase-1 is associated with a better long-term survival in patients with colorectal cancer. Scand. J. Gastroenterol. 42, 852-858. https://doi.org/10.1080/00365520701192383
  5. Bezerra, D.P., Pessoa, C., de Moraes, M.O., Saker-Neto, N., Silveira, E.R., and Costa-Lotufo, L.V. (2012). Overview of the therapeutic potential of piplartine (piperlongumine). Eur. J. Pharm. Sci. 48, 453-463.
  6. Caballero, F., Meiss, R., Gimenez, A., Batlle, A., and Vazquez, E. (2004). Immunohistochemical analysis of heme oxygenase-1 in preneoplastic and neoplastic lesions during chemical hepatocarcinogenesis. Int. J. Exp. Pathol. 85, 213-221. https://doi.org/10.1111/j.0959-9673.2004.00391.x
  7. Cornblatt, B.S., Ye, L.X., Dinkova-Kostova, A.T., Erb, M., Fahey, J.W., Singh, N.K., Chen, M.S.A., Stierer, T., Garrett-Mayer, E., Argani, P., et al. (2007). Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis 28, 1485-1490. https://doi.org/10.1093/carcin/bgm049
  8. Dent, G., Rabe, K.F., and Magnussen, H. (1997). Augmentation of human neutrophil and alveolar macrophage LTB4 production by N-acetylcysteine: role of hydrogen peroxide. Br. J. Pharmacol. 122, 758-764. https://doi.org/10.1038/sj.bjp.0701428
  9. Ewing, P., Wilke, A., Eissner, G., Holler, E., Andreesen, R., and Gerbitz, A. (2005). Expression of heme oxygenase-1 protects endothelial cells from irradiation-induced apoptosis. Endothelium 12, 113-119. https://doi.org/10.1080/10623320500189814
  10. Hill, M., Pereira, V., Chauveau, C., Zagani, R., Remy, S., Tesson, L., Mazal, D., Ubillos, L., Brion, R., Ashgar, K., et al. (2005). Heme oxygenase-1 inhibits rat and human breast cancer cell proliferation: mutual cross inhibition with indoleamine 2,3-dioxygenase. FASEB J. 19, 1957-1968. https://doi.org/10.1096/fj.05-3875com
  11. Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., et al. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313-322. https://doi.org/10.1006/bbrc.1997.6943
  12. Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J.D., and Yamamoto, M. (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13, 76-86. https://doi.org/10.1101/gad.13.1.76
  13. Kensler, T.W., Wakabayashi, N., and Biswal, S. (2007). Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89-116. https://doi.org/10.1146/annurev.pharmtox.46.120604.141046
  14. Keum, Y.S., Han, Y.H., Liew, C., Kim, J.H., Xu, C.J., Yuan, X.L., Shakarjian, M.P., Chong, S.H., and Kong, A.N. (2006). Induction of heme oxygenase-1 (HO-1) and NAD[P]H: Quinone oxidoreductase 1 (NQO1) by a phenolic antioxidant, butylated hydroxyanisole (BHA) and its metabolite, tertbutylhydroquinone (tBHQ) in primary-cultured human and rat hepatocytes. Pharm. Res. 23, 2586-2594. https://doi.org/10.1007/s11095-006-9094-2
  15. Kim, H.J., So, H.S., Lee, J.H., Lee, J.H., Park, C., Park, S.Y., Kim, Y.H., Youn, M.J., Kim, S.J., Chung, S.Y., et al. (2006). Heme oxygenase-1 attenuates the cisplatin-induced apoptosis of auditory cells via down-regulation of reactive oxygen species generation. Free Radic. Biol. Med. 40, 1810-1819. https://doi.org/10.1016/j.freeradbiomed.2006.01.018
  16. Kim, S.H., Lee, I.C., Baek, H.S., Shin, I.S., Moon, C., Bae, C.S., Kim, S.H., Kim, J.C., and Kim, H.C. (2014). Mechanism for the protective effect of diallyl disulfide against cyclophosphamide acute urotoxicity in rats. Food Chem. Toxicol. 64, 110-118. https://doi.org/10.1016/j.fct.2013.11.023
  17. Kobayashi, A., Kang, M.I., Watai, Y., Tong, K.I., Shibata, T., Uchida, K., and Yamamoto, M. (2006). Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol. Cell. Biol. 26, 221-229. https://doi.org/10.1128/MCB.26.1.221-229.2006
  18. Kobayashi, M., Li, L., Iwamoto, N., Nakajima-Takagi, Y., Kaneko, H., Nakayama, Y., Eguchi, M., Wada, Y., Kumagai, Y., and Yamamoto, M. (2009). The Antioxidant Defense System Keap1-Nrf2 Comprises a Multiple Sensing Mechanism for Responding to a Wide Range of Chemical Compounds. Mol. Cell. Biol. 29, 493-502. https://doi.org/10.1128/MCB.01080-08
  19. Lee, W.Y., Chen, Y.C., Shih, C.M., Lin, C.M., Cheng, C.H., Chen, K.C., and Lin, C.W. (2014). The induction of heme oxygenase-1 suppresses heat shock protein 90 and the proliferation of human breast cancer cells through its byproduct carbon monoxide. Toxicol. Appl. Pharmacol. 274, 55-62. https://doi.org/10.1016/j.taap.2013.10.027
  20. Lin, H.Y., Shen, S.C., and Chen, Y.C. (2005). Anti-inflammatory effect of heme oxygenase 1: Glycosylation and nitric oxide inhibition in macrophages. J. Cell Physiol. 202, 579-590. https://doi.org/10.1002/jcp.20160
  21. Lin, H.Y., Shen, S.C., Lin, C.W., Yang, L.Y., and Chen, Y.C. (2007). Baicalein inhibition of hydrogen peroxide-induced apoptosis via ROS-dependent heme oxygenase 1 gene expression. Biochim. Biophys. Acta 1773, 1073-1086. https://doi.org/10.1016/j.bbamcr.2007.04.008
  22. Lin, C.W., Shen, S.C., Hou, W.C., Yang, L.Y., and Chen, Y.C. (2008). Heme oxygenase-1 inhibits breast cancer invasion via suppressing the expression of matrix metalloproteinase-9. Mol. Cancer Ther. 7, 1195-1206. https://doi.org/10.1158/1535-7163.MCT-07-2199
  23. Liu, J.M., Pan, F., Li, L., Liu, Q.R., Chen, Y., Xiong, X.X., Cheng, K.J., Bin Yu. S., Shi, Z., Yu, A.C.H., et al. (2013). Piperlongumine selectively kills glioblastoma multiforme cells via reactive oxygen species accumulation dependent JNK and p38 activation. Biochem. Biophys. Res. Commun. 437, 87-93. https://doi.org/10.1016/j.bbrc.2013.06.042
  24. Raj, L., Ide, T., Gurkar, A.U., Foley, M., Schenone, M., Li, X., Tolliday, N.J., Golub, T.R., Carr, S.A., Shamji, A.F., et al. (2011). Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475, 231-234. https://doi.org/10.1038/nature10167
  25. Rao, V.R., Muthenna, P., Shankaraiah, G., Akileshwari, C., Babu, K.H., Suresh, G., Babu, K.S., Chandra Kumar, R.S., Prasad, K.R., Yadav, P.A., et al. (2012). Synthesis and biological evaluation of new piplartine analogues as potent aldose reductase inhibitors (ARIs). Eur. J. Med. Chem. 57, 344-361. https://doi.org/10.1016/j.ejmech.2012.09.014
  26. Russo, M., Spagnuolo, C., Tedesco, I., and Russo, G.L. (2010). Phytochemicals in Cancer Prevention and Therapy: Truth or Dare? Toxins 2, 517-551. https://doi.org/10.3390/toxins2040517
  27. Son, D.J., Kim, S.Y., Han, S.S., Kim, C.W., Kumar, S., Park, B.S., Lee, S.E., Yun, Y.P., Jo, H., and Park, Y.H. (2012). Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling. Biochem. Biophys. Res. Commun. 427, 349-354. https://doi.org/10.1016/j.bbrc.2012.09.061
  28. Tsuji, M.H., Yanagawa, T., Iwasa, S., Tabuchi, K., Onizawa, K., Bannai, S., Toyooka, H., and Yoshida, H. (1999). Heme oxygenase-1 expression in oral squamous cell carcinoma as involved in lymph node metastasis. Cancer lett. 138, 53-59. https://doi.org/10.1016/S0304-3835(98)00372-3
  29. Yamamoto, T., Suzuki, T., Kobayashi, A., Wakabayashi, J., Maher, J., Motohashi, H., and Yamamoto, M. (2008). Physiological significance of reactive cysteine residues of keap1 in determining Nrf2 activity. Mol. Cell. Biol. 28, 2758-2770. https://doi.org/10.1128/MCB.01704-07
  30. Yang, Y.C., Lee, S.G., Lee, H.K., Kim, M.K., Lee, S.H., and Lee, H.S. (2002). A piperidine amide extracted from Piper longum L. fruit shows activity against Aedes aegypti mosquito larvae. J. Agric. Food Chem. 50, 3765-3767. https://doi.org/10.1021/jf011708f
  31. Zhang, D.D., Lo, S.C., Cross, J.V., Templeton, D.J., and Hannink, M. (2004). Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol. Cell. Biol. 24, 10941-10953. https://doi.org/10.1128/MCB.24.24.10941-10953.2004
  32. Zou, C., Zhang, H., Li, Q., Xiao, H., Yu, L., Ke, S., Zhou, L., Liu, W., Wang, W., Huang, H., et al. (2011). Heme oxygenase-1: a molecular brake on hepatocellular carcinoma cell migration. Carcinogenesis 32, 1840-1848. https://doi.org/10.1093/carcin/bgr225

Cited by

  1. Allantopyrone A activates Keap1–Nrf2 pathway and protects PC12 cells from oxidative stress-induced cell death vol.70, pp.4, 2017, https://doi.org/10.1038/ja.2016.99
  2. Structural and Biochemical Analyses Reveal the Mechanism of GlutathioneS-Transferase Pi 1 Inhibition by the Anti-cancer Compound Piperlongumine vol.292, pp.1, 2017, https://doi.org/10.1074/jbc.M116.750299
  3. Piperlongumine (piplartine) and analogues: Antiproliferative microtubule-destabilising agents vol.125, 2017, https://doi.org/10.1016/j.ejmech.2016.09.048
  4. The see-saw of Keap1-Nrf2 pathway in cancer vol.116, 2017, https://doi.org/10.1016/j.critrevonc.2017.02.006
  5. Astaxanthin from shrimp efficiently modulates oxidative stress and allied cell death progression in MCF-7 cells treated synergistically with β-carotene and lutein from greens vol.106, 2017, https://doi.org/10.1016/j.fct.2017.05.024
  6. Transcriptome Analysis of Piperlongumine-Treated Human Pancreatic Cancer Cells Reveals Involvement of Oxidative Stress and Endoplasmic Reticulum Stress Pathways vol.19, pp.6, 2016, https://doi.org/10.1089/jmf.2015.0152
  7. Metabolic profile and safety of piperlongumine vol.6, pp.1, 2016, https://doi.org/10.1038/srep33646
  8. Piperlongumine induces G2/M phase arrest and apoptosis in cholangiocarcinoma cells through the ROS-JNK-ERK signaling pathway 2017, https://doi.org/10.1007/s10495-017-1422-y
  9. MicroRNA-1304 suppresses human non-small cell lung cancer cell growth in vitro by targeting heme oxygenase-1 vol.38, pp.1, 2017, https://doi.org/10.1038/aps.2016.92
  10. Inducers of Senescence, Toxic Compounds, and Senolytics: The Multiple Faces of Nrf2-Activating Phytochemicals in Cancer Adjuvant Therapy vol.2018, pp.1466-1861, 2018, https://doi.org/10.1155/2018/4159013
  11. Simvastatin induces heme oxygenase-1 via NF-E2-related factor 2 (Nrf2) activation through ERK and PI3K/Akt pathway in colon cancer vol.7, pp.29, 2015, https://doi.org/10.18632/oncotarget.10078
  12. Discovery of piperlongumine as a potential novel lead for the development of senolytic agents vol.8, pp.11, 2015, https://doi.org/10.18632/aging.101100
  13. Piperlongumine potentiates the effects of gemcitabine in in vitro and in vivo human pancreatic cancer models vol.9, pp.12, 2018, https://doi.org/10.18632/oncotarget.23623
  14. Mutant p53 tunes the NRF2-dependent antioxidant response to support survival of cancer cells vol.9, pp.29, 2018, https://doi.org/10.18632/oncotarget.24974
  15. Heme oxygenase-1 exerts pro-apoptotic effects on hepatic stellate cells in vitro through regulation of nuclear factor-κB vol.16, pp.1, 2018, https://doi.org/10.3892/etm.2018.6185
  16. Mutant p53 as a guardian of the cancer cell vol.26, pp.2, 2019, https://doi.org/10.1038/s41418-018-0246-9
  17. Piperlongumine Induces Cell Cycle Arrest via Reactive Oxygen Species Accumulation and IKKβ Suppression in Human Breast Cancer Cells vol.8, pp.11, 2015, https://doi.org/10.3390/antiox8110553
  18. Piplartine attenuates the proliferation of hepatocellular carcinoma cells via regulating hsa_circ_100338 expression vol.9, pp.12, 2020, https://doi.org/10.1002/cam4.3043
  19. Natural Antioxidant and Anti-Inflammatory Compounds in Foodstuff or Medicinal Herbs Inducing Heme Oxygenase-1 Expression vol.9, pp.12, 2020, https://doi.org/10.3390/antiox9121191
  20. Ferula L. Plant Extracts and Dose-Dependent Activity of Natural Sesquiterpene Ferutinin: From Antioxidant Potential to Cytotoxic Effects vol.25, pp.23, 2015, https://doi.org/10.3390/molecules25235768
  21. Control of Oxidative Stress in Cancer Chemoresistance: Spotlight on Nrf2 Role vol.10, pp.4, 2015, https://doi.org/10.3390/antiox10040510
  22. Antileishmanial activity evaluation of a natural amide and its synthetic analogs against Leishmania (V.) braziliensis: an integrated approach in vitro and in silico vol.120, pp.6, 2021, https://doi.org/10.1007/s00436-021-07169-w
  23. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells vol.34, pp.18, 2021, https://doi.org/10.1089/ars.2020.8146
  24. Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer Cells vol.13, pp.17, 2021, https://doi.org/10.3390/cancers13174266
  25. Piperlongumine inhibits the growth of non-small cell lung cancer cells via the miR-34b-3p/TGFBR1 pathway vol.21, pp.1, 2015, https://doi.org/10.1186/s12906-020-03123-y