• Title/Summary/Keyword: Novel marine bacterium

Search Result 44, Processing Time 0.02 seconds

Isolation and Characterization of Novel Alginate-Degrading Pseudoalteromonas sp. Y-4

  • Cho, Hyeon-Ah;Kim, Hyun-Woo;Kim, Young-Mog
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.259-263
    • /
    • 2012
  • To isolate an alginate-degrading bacterium, we conducted a single colony isolation using a solid medium containing alginate as the sole carbon source. A marine bacterium Y-4 capable of degrading alginate was isolated from seawater. The strain was identified to be Pseudoalteromonas sp., based on morphological, biochemical, 16S rDNA homology, and phylogenetic analyses. Moreover, Pseudoalteromonas sp. Y-4 exhibited alginate lyase activity in the presence of 4% alginate even though many known alginate-degrading bacteria degrade in the range of 0.5-1% alginate. The optimum culture conditions for the Y-4 strain were 2% alginate, pH 8.0, and 3% NaCl at $30^{\circ}C$. The highest alginate lyase activity was also observed under the same conditions. To our knowledge, this is the first reported isolation of a marine bacterium degrading high concentrations of alginate.

Four Butenolides are Novel Cytotoxic Compounds Isolated from the Marine-Derived Bacterium, Streptoverticillium luteoverticillatum 11014

  • Li, De-Hai;Zhu, Tian-Jiao;Liu, Hong-Bing;Fang, Yu-Chun;Gu, Qian-Qun;Zhu, Wei-Ming
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.624-626
    • /
    • 2006
  • Four known butenolides were isolated from the ethyl acetate extracts of the culture broth of the marine-derived bacterium, Streptoverticillium luteoverticillatum, by bioassay-guided fractionation. The structures were identified on the basis of spectral data. The absolute configuration of compound (1) was determined by CD spectrum for the first time. Compounds 1-4 showed in vitro cytotoxicity against the murine lymphoma P388 and human leukemia K562 cell lines. This is the first report on the isolation of butenolides from the marine bacterium, Streptoverticillium luteoverticillatum, and their cytotoxic activities.

Effect of Culture Conditions on Cathepsin B Inhibitor Production by a Marine Bacterium, Pseudomonas sp. Strain PB01

  • Hoang, Le Thu Van;Kim, Moon-Moo;Kim, Se-Kwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1115-1120
    • /
    • 2008
  • A novel cathepsin B inhibitor-producing bacterium was isolated from marine sediments and identified based on its 16S rDNA sequence as Pseudomonas sp. strain PB01 (Accession No. EU126129). The growth and enzyme inhibitor production were investigated under various culture conditions. A mixture of organic nitrogen source was required for the optimal production, whereas both glucose and maltose proved to be the effective carbon sources for cathepsin B inhibitor production. Other optimal culture conditions included temperature range between 25 and $28^{\circ}C$, initial medium pH of 6.6, and shaking speed of 200 rpm. Under these optimal conditions, the maximum inhibitory activity from culture broth was approximately 50% after 30 h of cultivation. Additionally, kinetic study revealed that inhibitor production paralleled with cell growth, which suggested that the inhibitor may be a primary metabolite of that bacterium.

Isolation of a Marine-derived Flammeovirga sp. mbrc-1 Strain and Characterization of Its Agarase (해양성 Flammeovirga sp. mbrc-1 균주의 분리 및 한천분해기능의 특성조사)

  • Jang, Hye-Ji;Lee, Dong-Geun;Lee, Seung-Woo;Jeon, Myong-Je;Chun, Won-Ju;Kwon, Kae-Kyoung;Lee, Hee-Soon;Lee, Sang-Hyeon
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.552-556
    • /
    • 2011
  • A novel agar-degrading bacterium mbrc-1 was isolated from seashore of Kyungpo at Gangwon province and cultured in marine broth 2216 medium. Isolated bacterium mbrc-1 was named as Flammeovirga sp. mbrc-1 based on the 16S rDNA sequence. Its agarase showed maximum activity of 923 units/L at pH 7.0 and $45^{\circ}C$ and sustained 90% remaining activity after exposed to $45^{\circ}C$ for 2 hours. The enzyme hydrolyzed agarose to yield neoagarohexaose (18.5%), neoagarotetraose (38%) and neoagarobiose (43.5%), indicating that the enzyme is ${\beta}$-agarase. Thus, isolated bacterium and its ${\beta}$-agarase would be useful for the industrial production of neoagarotetraose and neoagarobiose.

Characterization of Agarase Produced from the Isolated Marine Bacterium Marinomonas sp. SH-2 (해양성 Marinomonas sp. SH-2 균주가 생성하는 agarase의 분리 및 특성조사)

  • Jo, Jeong-Gwon;Lee, Sol-Ji;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.198-203
    • /
    • 2016
  • This study aimed to isolate a novel agarase-producing marine bacterium and characterize its agarase, as agarases are known to produce biofunctional agarooligosaccharides or neo-agarooligosaccharides. A novel agar-degrading bacterium, SH-2, was isolated from the seawater of Namhae in Gyeongnam Province, Korea, and cultured in Marine agar 2216 medium. The 16S rRNA gene sequence represented 99% identity with that of the members of the Marinomonas genus; hence, the isolated bacterium was named Marinomonas sp. SH-2. The crude agarase was prepared from a culture medium of Marinomonas. sp SH-2, and exhibited maximum agarase activity at 170.2 units/l. The optimum conditions were pH 6.0 and 30℃ in 20 mM Tris-HCl buffer. The agarase activity of the bacterium was highly elevated from 20℃(42% relative activity) to 30℃(100%), and 82% activity was shown at 40℃. Its relative activities were less than 40% at over 40℃ after a 0.5 hr exposure. Relative activity was 100% at pH 6.0, while it was 72% and 48% at pH 5.0 and pH 7.0, respectively. The enzyme from Marinomonas sp. SH-2 degraded agarose to neoagarohexaose and neoagarotetraose, indicating that the enzyme is β-agarase. Thus, Marinomonas sp. SH-2 and its enzyme could be practical for applications in food, cosmetic, and medical research.

Isolation and Characterization of a Marine Derived Bacterium Glaciecola sp. SL-12 Producing β-agarase (한천분해효소를 생산하는 해양유래 세균 Glaciecola sp. SL-12의 분리 및 특성)

  • Lee, Dong-Geun;Lee, Ok-Hee;Jang, Hyo-Jung;Jang, Min-Kyung;Yoo, Ki-Hwan;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.58-62
    • /
    • 2008
  • A novel agar-degrading bacterium SL-12 was isolated from seashore of Kijang at Busan, Korea, and cultured in marine broth 2216 media. Isolated bacterium SL-12 was identified as Glaciecola genus by 16S rDNA sequencing with 98% identity. The optimum pH of the enzyme activity was 7.0 and the optimum temperature for the reaction was $30^{\circ}C$. The enzyme hydrolyzed neoagarohexaose to yield neoagarobiose as the main product, indicating that the enzyme is ${\beta}$-agarase. Thus, isolated bacterium and the enzyme would be useful for the industrial production of neoagarobiose.

Characterization of β-agarase from Isolated Simiduia sp. SH-4 (분리된 Simiduia sp. SH-4가 생산하는 β-agarase의 특성조사)

  • Kim, Jae-Deog;Lee, Sol-Ji;Jo, Jeong-Gwon;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.453-459
    • /
    • 2016
  • Agarases are classified into α-agarase and β-agarase that produce agarooligosaccharides and neoagarooligosaccharides, respectively. Neoagarooligosaccharides have whitening effect of skin, delay of starch degradation, and inhibition of bacterial growth etc. Hence, the object of this study was to isolate a novel agarase producing marine bacterium and characterization of its β-agarase. A novel agar-degrading bacterium was isolated from seashore of Namhae at Gyeongnamprovine, Korea and purely cultured with Marine agar 2216 media. The isolated bacterium was identified as Simiduia sp. SH-4 after 16S rRNA gene sequencing. The enzymatic sample was obtained from culture media of Simiduia sp. SH-4. Enzymatic activity was highly increased from 20(30% relative activity) to 30℃ (100%) and decreased from 30 to 40℃(75%) and so more. Relative activity was 100% at pH 6 while those were about 91% and 59% at pH 5.0 and 7.0, respectively, meaning the enzyme possesses narrow optimal pH range. Hence, the enzyme exhibited the maximal activity with 120.4 units/l at pH 6.0 and 30℃ in 20 mM Tris-HCl buffer. Thin layer chromatography (TLC) analysis showed that Simiduia sp. SH-4 produces β-agarase, which hydrolyze agarose to produce biofunctional neoagarooligosaccharides such as neoagarotetraose and neoagarobiose. Hence, broad applications would be possible using Simiduia sp. SH-4 and its enzyme in the food industry, cosmetics and medical fields.

Characterization of the Novel Marine Bacterium Planococcus sp. 107-1T (신종 해양미생물 Planococcus sp. 107-1T의 분류학적 특성 분석)

  • Kim, Dong-Gyun;Jung, Hyun-Kyoung;Kim, Young-Ok;Kong, Hee Jeong;Nam, Bo-Hye;Kim, Ju-Won;Kim, Young-Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.612-624
    • /
    • 2022
  • A novel Gram-positive, motile, non-spore forming aerobic marine bacterium, designated 107-1T was isolated from tidal mud collected in Gyehwa-do, South Korea. Cells of strain 107-1T were short rod or coccoid, oxidase negative, catalase positive and grew at 10-40℃ (with optimum growth at 25-30℃). It utilized menaquinones MK-7 and 8 as its respiratory quinones and its major fatty acids were anteiso-C15:0 (37.9%), iso-C16:0 (14.9%), and iso-C14:0 (10.8%). Phylogenetic analysis based on 16S rRNA gene sequences revealed a distinct clade containing strain 107-1T and close species Planococcus ruber CW1T(98.52% sequence similarity), P. faecalis KCTC 33580T(97.67%), P. kocurii ATCC 43650T(97.48%), P. donghaensis DSM 22276T(97.47%), and P. halocryophilus DSM 24743T(97.37%). Strain 107-1T contains one circular chromosome (3,513,248bp in length) with G+C content of 44.6 mol%. Estimated ranges for genome to genome distance, average nucleotide identity, and average amino acid identity comparing strain 107-1T with close taxa were 20.3-34.8%, 77.9-86.9%, and 73.6-92.8%, respectively. Based on polyphasic analysis, strain 107-1T represents a novel species belonging to the genus Planococcus.

Aureivirga callyspongiae sp. nov., Isolated from Marine Sponge Callyspongia elegans

  • Park, So Hyun;Kim, Ji Young;Heo, Moon Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.384-390
    • /
    • 2021
  • A Gram-negative, aerobic, motile by gliding, and rod-shaped marine bacterium, designated CE67T was isolated from the marine sponge Callyspongia elegans on Biyang-do in Jeju Island. The CE67T strain grew optimally at 25℃, pH 7.5, and in the presence of 2-3% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain CE67T was related to the genus Aureivirga and had the highest 16S rRNA gene sequence similarity to the Aureivirga marina VIII.04T type strain (96.3%). The primary fatty acids (>10%) of strain CE67T were iso-C15:0 (35.3%) and iso-C17:0 3OH (21.8%). The polar lipid profile of strain CE67T contained phosphatidylethanolamine, unidentified aminolipids, and unidentified lipids. The predominant menaquinone was MK-6. The DNA G+C content was 29.1 mol%. Based on the polyphasic taxonomic analysis, strain CE67T was determined to be a representative novel species of the genus Aureivirga for which we propose the name Aureivirga callyspongiae sp. nov., whose strain type is CE67T (=KCTC 42847T=JCM 34566T).

Antibacterial Activity of an Ethyl Acetate Extract of Pseudomonas sp. UJ-6 against Methicillin-Resistant Staphylococcus aureus

  • Lee, Dae-Sung;Eom, Sung-Hwan;Je, Jae-Young;Kim, Young-Mog;Lee, Myung-Suk;Kim, Young-Man
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.2
    • /
    • pp.79-84
    • /
    • 2013
  • In an effort to discover an alternative antibiotic for treating infections with methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas sp. UJ-6, a marine bacterium that exhibited antibacterial activity against MRSA, was isolated. The culture broth and its ethyl acetate extract exhibited bactericidal activity against MRSA. The extract also exhibited antibacterial activity against gram-negative bacteria, which were not susceptible to vancomycin. The treatment of MRSA with the extract resulted in abnormal cell lysis. The extract retained >95% of its anti-MRSA activity after heat treatment for 15 min at $121^{\circ}C$. Thus, although most antibiotics are unstable under conditions of thermal stress, Pseudomonas sp. UJ-6 produces a heat-stable anti-MRSA substance. The results of this study strongly suggest that Pseudomonas sp. UJ-6 can be used to develop a novel, heat-stable, broad-spectrum antibiotic for the treatment of MRSA infections.