• Title/Summary/Keyword: Notch radius

Search Result 53, Processing Time 0.028 seconds

Evaluation of Critical Notch radius using Notch/Crack Critical Average Stress Fracture Model (노치/균열 임계평균응력 파손모델을 이용한 임계노치반경 평가)

  • 김재훈;김덕회;김기수;안병욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1358-1361
    • /
    • 2003
  • In this study, intrinsic static/dynamic fracture toughness of Al 7175-T74 are evaluated from the apparent static/dynamic toughness of notched specimen. The notch/crack critical average stress fracture model is suggested to establish the relationship to predict the intrinsic fracture toughness from the apparent fracture toughness of a notched specimen. The notch/crack critical average stress fracture model is established using the relation between the notch root radius and the effective distance calculated by finite element analysis. It is conclude that the true fracture toughness can be estimated from test results of apparent fracture toughness measured by using a notched specimen. Also, critical notch root radius can be predicted by notch/crack critical average stress fracture model.

  • PDF

A Study on the Corrosion Fatigue Fracture of U-notch Radius (U-노치반경에 따른 부식피로 파괴거동)

  • 이장규;윤종희;인승현;우창기;신관수;최양호;박성완
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.58-63
    • /
    • 2002
  • This study has performed rotary bending fatigue testing that smooth specimen using SM45C materials and notched specimen whose radii were R6, R4 and R2, were processed in 3% NaCl aqueous solutions or in the air. The results are as followed; 1. In the air fatigue limit at 10$^{7}$ cycles remarkably reduced as notch radius goes small. 2. In 3% NaCl aqueous solution fatigue strength at 10$^{6}$ cycles also had large range of reduction as notch radius goes small. 3. Comparing fatigue strength in the air, fatigue strength at 10$^{6}$ cycles in 3% NaCl aqueous solution reduced by 46.2% at smooth specimen, 55.3% at R6 notch radius, 45.8% at R4 and 39.7% at R2 respectively. 4. The reason that fatigue strength reduced in the reduction of notch radius sire was because the surface of notch exposed in corrosion was small and consequently it was less corroded.

  • PDF

Application of 1mm fictitious notch radius approach to the fatigue strength assessment of welded joint (1mm 가상 노치 반경을 이용한 용접부 피로강도 평가에 관한 연구)

  • Kim Yu Il;Gang Jung Gyu;Heo Ju Ho
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.275-277
    • /
    • 2004
  • Fictitious notch radius approach is based on the Neuter's microstructural support hypothesis which assumes that fatigue crack is governed by highly stressed volume of the material right on the weld toe area rather than the surface stress at a pin point of weld toe area. Variety of successes have been achieved in applying this methodology to the fatigue of welded joint, hence, it became one of recommended design procedure in IIW's recommendation as well as many ship classification societies. 1mm fictitious notch radius approach was applied to the various fatigue problems of welded joints in this study covering the effect of weld size, notch stress calculation for 3D geometry and low cycle fatigue problem. It was found that fictitious notch radius approach fumed out to be very effective and accurate in dealing with fatigue strength of welded joint.

  • PDF

Dynamic Crack Initiation of 17-4PH Casting Steel for Various Notch Radius (다양한 노치 반경을 갖는 17-4PH강의 동적균열개시 특성)

  • 박성욱;김덕회;김재훈;문순일
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.160-163
    • /
    • 2003
  • In this study, intrinsic dynamic fracture toughness of 17-4PH casting steel is evaluated from the apparent dynamic fracture toughness of notched specimen. Notch radius of notched specimen is manufactured from 0.1mm to 4mm. The results shows that dynamic fracture toughness decreases with decreasing of notch root radius above critical notch roof radius. The true dynamic fracture toughness can be predicted from test results of apparent dynamic fracture toughness measured by using notched specimen.

  • PDF

Fracture Mechanics Assessment for Different Notch Sizes Using Finite Element Analysis Based on Ductile Failure Simulation (유한요소 연성파손 모사기법을 이용한 노치 결함 반경 크기에 따른 파괴역학적 평가)

  • Bae, Keun Hyung;Jeon, Jun Young;Han, Jae Jun;Nam, Hyun Suk;Lee, Dae Young;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.693-701
    • /
    • 2016
  • In this study, notch defects are evaluated using fracture mechanics. To understand the effects of notch defects, FE analysis is conducted to predict the limit load and J-integral for middle-cracked and single-edge cracked plates with various sizes of notch under tension and bending. As the radius of the notch increases, the energy release rate also increases, although the limit load remains constant. The values of fracture toughness($J_{IC}$) of SM490A are determined for various notch radii through FE simulation instead of conducting an experiment. As the radius of the notch increases, the energy release rate also increases, together with a more significant increase in fracture toughness. To conclude, as the notch radius increases, the resistance to crack propagation also increases.

A Study on Mechanical Properties According to the Depth of Notch in SM20C Friction Welding Zone (SM20C 마찰용접부(摩擦鎔接部)의 노치 깊이에 따른 기계적(機械的) 성질(性質) 연구(硏究))

  • Lee, Se-Gyoung;Chung, Jun-Mo;Park, Chun-Bong;Min, Taeg-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • The present study examined the mechanical properties of the friction welding zone of solid and hollow shafts made with SM20C according to the depth of the notch. Friction welding was conducted at welding conditions of 2,000 rpm, friction pressure of 60MPa, friction time of 1.4 seconds, upset pressure of 100MPa, and upset time of 2.0 seconds. In the tensile strength test, the tensile strength decreased as the depth of the notch increased. Tensile strength was moderately high when the depth of the notch was 2mm. The tensile strength of the welding zone increased as the friction revolution radius increased, because the latter led to the generation of adequate friction heat. According to the hardness test, hardness likewise increased as e friction revolution radius increased. In the bending test, the bend strength of the solid shaft decreased when the depth of the notch was 0-2mm but increased when the latter was 3-5mm. With regard to the hollow shaft, the bend strength drastically decreased when the depth of the notch was 3-4mm. Upon examination it was found that the microstructure became finer when the friction revolution radius increased.

High-Tc superconducting magnet properites with design conditions (설계조건에 따른 고온 초전도 마그넷의 특성변화)

  • Kim, Min-Ki;Ko, Yo;Han, Byoung-Sung
    • Electrical & Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.451-457
    • /
    • 1995
  • Most important study on development of high-Tc superconducting magnet is magnetic properties with design conditions To study optimal design condition of high-Tc superconducting magnet, small size solenoid magnet was designed and simulated. Design conditions are radius of bobbin, radius of magnet, length of magnet, critical cur-rent and notch size. We know that intensity of magnetic fields was controled by critical current and uniformity of magnetic fields was controled by notch size. The optimal design conditions to get the high intensity and uniformity of magnetic field in this experiments were radius of bobbin=3[cm], radius of magnetic=12[cm], length of Z=10[cm], notch size=6[cm] and critical current=12[A].

  • PDF

Limit Load and Fully Plastic Stress Analysis for Circular Notched Plates and Bars Using Fully Plastic Analysis (완전소성해석을 이용한 원형노치 인장시편의 한계하중 및 완전소성응력장 해석)

  • Oh Chang-Kyun;Myung Man-Sik;Kim Yun-Jae;Park Jin-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1605-1614
    • /
    • 2005
  • For the last four decades, tension test of notched bars has been performed to investigate the effect of stress triaxiality on ductile fracture. To quantify the effect of the notch radius on stress triaxiality, the Bridgman equation is typically used. However, recent works based on detailed finite element analysis have shown that the Bridgman equation is not correct, possibly due to his assumption that strain is constant in the necked ligament. Up to present, no systematic work has been performed on fully plastic stress fields for notched bars in tension. This paper presents fully plastic results for tension of notched bars and plates in plane strain, via finite element limit analysis. The notch radius is systematically varied, covering both un-cracked and cracked cases. Comparison of plastic limit loads with existing solutions shows that existing solutions are accurate for notched plates, but not for notched bars. Accordingly new limit load solutions are given for notched bars. Variations of stress triaxiality with the notch radius and depth are also given, which again indicates that the Bridgman solution for notched bars is not correct and inaccuracy depends on the notch radius and depth.

Notch Radius Effect for Static Fracture Toughness of Al 7175 Alloys (Al 7175 합금의 정적 파괴인성에 미치는 노치반경 영향)

  • 김재훈;김덕회;박성욱;문순일
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.84-87
    • /
    • 2002
  • In this study, intrinsic fracture toughness of Al 7175-T74 is evaluated from the apparent toughness of notched specimen. Modified average stress model is used to establish the relationship to predict the intrinsic fracture toughness from the apparent fracture toughness of a notched-cracked specimen. The modified average stress model is established the relation between notch radius and effective distance calculated by FEM analysis. The results show that fracture toughness decreases with decreasing of notch root radius. The true fracture toughness can be predicted from test results of apparent fracture toughness measured by using notched specimen.

  • PDF

A Study on the Role of Notch and Radius Reduction Ratio in the Balanced Type Vane Pump (베인 펌프에서 노치와 반경 감소비의 역활에 관한 연구)

  • 김기동;조명래;문호지;배홍용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.533-539
    • /
    • 1997
  • Pressure ripple of hydraulic vane pump results form flow ripple due to pump geometry and reverse flow through the discharge port due to compressibility of fluid and result in vibration and noise of connected hydraulic elements. In a ba;anced type vane pump, cam ring curve is important factor to influence the flow ripple. Therefore, to reduce the now ripple, it has been required that optimal selection of seal region by proper design of cam ring and each port position, and notches for preventing the excessive reverse flow. This paper has been performed analytical study of compression characteristics with major design parameter in side plate and cam ring, and examined into the role of notch and radius reduction ratio.

  • PDF