Abstract
The present study examined the mechanical properties of the friction welding zone of solid and hollow shafts made with SM20C according to the depth of the notch. Friction welding was conducted at welding conditions of 2,000 rpm, friction pressure of 60MPa, friction time of 1.4 seconds, upset pressure of 100MPa, and upset time of 2.0 seconds. In the tensile strength test, the tensile strength decreased as the depth of the notch increased. Tensile strength was moderately high when the depth of the notch was 2mm. The tensile strength of the welding zone increased as the friction revolution radius increased, because the latter led to the generation of adequate friction heat. According to the hardness test, hardness likewise increased as e friction revolution radius increased. In the bending test, the bend strength of the solid shaft decreased when the depth of the notch was 0-2mm but increased when the latter was 3-5mm. With regard to the hollow shaft, the bend strength drastically decreased when the depth of the notch was 3-4mm. Upon examination it was found that the microstructure became finer when the friction revolution radius increased.