DOI QR코드

DOI QR Code

Fracture Mechanics Assessment for Different Notch Sizes Using Finite Element Analysis Based on Ductile Failure Simulation

유한요소 연성파손 모사기법을 이용한 노치 결함 반경 크기에 따른 파괴역학적 평가

  • Received : 2014.11.18
  • Accepted : 2016.06.15
  • Published : 2016.08.01

Abstract

In this study, notch defects are evaluated using fracture mechanics. To understand the effects of notch defects, FE analysis is conducted to predict the limit load and J-integral for middle-cracked and single-edge cracked plates with various sizes of notch under tension and bending. As the radius of the notch increases, the energy release rate also increases, although the limit load remains constant. The values of fracture toughness($J_{IC}$) of SM490A are determined for various notch radii through FE simulation instead of conducting an experiment. As the radius of the notch increases, the energy release rate also increases, together with a more significant increase in fracture toughness. To conclude, as the notch radius increases, the resistance to crack propagation also increases.

본 논문에서는 파괴역학적 방법으로 노치 결함을 평가해 보았다. 인장 하중과 굽힘하중이 작용하는 중앙 균열, 모서리 균열 평판 구조물을 바탕으로 노치 크기를 달리하며 한계하중 및 에너지해방률을 유한요소 해석의 J-적분으로 도출하였다. 노치의 반경이 커짐에 따라 한계하중은 큰 변화가 없었으며, 에너지해방률는 커지는 양상을 보였다. 노치 반경에 따른 재료 파괴인성($J_{IC}$)측정을 위해 실험을 대신한 유한요소 연성파손 모사기법을 사용하였다. 그 결과 노치 크기 증가에 따른 에너지해방률 증가량 대비 파괴인성($J_{IC}$) 증가량이 더욱 큰 양상을 보였다. 이런 결과를 통해 노치 반경이 커질수록 균열 진전에 대한 저항성이 커진다는 사실을 알 수 있었다.

Keywords

References

  1. Lee, D. Y., Park, H. B., Bae, K. H. and Kim, Y. J., 2014, "Limit Load Analysis for Circumferential Pipe Weld with Notch Type Flaw," Trans, of the KSME Spring conference, Vol. 4, pp. 283-284.
  2. Bond, S., 2003, "Corrosion of Welded Components in Marine Environments," Prevention and Management of Marine Corrosion, TWI.
  3. Kamaya, M., 2012, "A Stress-based Criterion for Ductile Crack Initiation of Pre-strained Carbon Steel," Engineering Fracture Mechanics, Vol. 96, pp. 461-479. https://doi.org/10.1016/j.engfracmech.2012.08.020
  4. British Energy Generation Ltd., 2010, "Assessment of the Integrity of Structures Containing Defects," R6 Revision 4.
  5. McClintock, F. A., 1968, "A Criterion for Ductile Fracture by the Growth of Holes," Journal of Applied Mechanics Vol. 35, No. 2, pp. 363-371. https://doi.org/10.1115/1.3601204
  6. Rice, J. R. and Tracey, D. M., 1969, "On the Ductile Enlargement of Voids in Triaxial Stress Fields," Journal of the Mechanics and Physics of Solids, Vol. 17, No. 3, pp. 201-217. https://doi.org/10.1016/0022-5096(69)90033-7
  7. Hancock, J. W. and Mackenzie, A. C., 1976, "On the Mechanisms of Ductile Failure in High-strength Steels Subjected to Multi-axial Stress-states," Journal of the Mechanics and Physics of Solids Vol. 24, No. 2-3, pp. 147-160. https://doi.org/10.1016/0022-5096(76)90024-7
  8. Arndt, J. and Dahl, W., 1997, "Effect of Void Growth and Shape on the Initiation of Ductile Failure of Steels," Computational Materials Science, Vol. 9, No. 1-2, pp. 1-6. https://doi.org/10.1016/S0927-0256(97)00052-9
  9. Kanvinde, A. and Deierlein, G., 2006, "The Void Growth Model and the Stress Modified Critical Strain Model to Predict Ductile Fracture in Structural Steels," Journal of Structural Engineering, Vol. 132, No. 12, pp. 1907-1918. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(1907)
  10. Abaqus 6.13, Analysis User's Manual, Dassault Systemes Simulia Corp., Providence, RI, 2013.
  11. Jeon, J. Y., Kim, N. H. and Kim, Y. J., 2012, "Finite Element Damage Analysis for Cast Stainless Steel (CF8M) Material Considering Variance in Experimental Data," Trans. Korean Soc. Mech. Eng. A, Vol. 36, pp. 769-776. https://doi.org/10.3795/KSME-A.2012.36.7.769
  12. ASTM E1820-11e1: Standard Test Method for Measurement for Fracture Toughness. 2006, American Society of Testing and Materials.
  13. ESIS P2-92: ESIS Procedure for Determining the Fracture Behaviour of Materials; 1992, "European Structural Integrity Society," pp. 28-A7.2.
  14. Kamaya, M., 2013, "Estimation of Elastic-plastic Fracture Toughness by Numerical Simulation Based on a Stress-based Criterion for Ductile Crack Initiation," International Journal of pressure Vessels and Piping, Vol. 117-118, pp. 2-8.