DOI QR코드

DOI QR Code

Kalman Filter-based Sensor Fusion for Posture Stabilization of a Mobile Robot

모바일 로봇 자세 안정화를 위한 칼만 필터 기반 센서 퓨전

  • Received : 2015.12.08
  • Accepted : 2016.06.29
  • Published : 2016.08.01

Abstract

In robotics research, accurate estimation of current robot position is important to achieve motion control of a robot. In this research, we focus on a sensor fusion method to provide improved position estimation for a wheeled mobile robot, considering two different sensor measurements. In this case, we fuse camera-based vision and encode-based odometry data using Kalman filter techniques to improve the position estimation of the robot. An external camera-based vision system provides global position coordinates (x, y) for the mobile robot in an indoor environment. An internal encoder-based odometry provides linear and angular velocities of the robot. We then use the position data estimated by the Kalman filter as inputs to the motion controller, which significantly improves performance of the motion controller. Finally, we experimentally verify the performance of the proposed sensor fused position estimation and motion controller using an actual mobile robot system. In our experiments, we also compare the Kalman filter-based sensor fused estimation with two different single sensor-based estimations (vision-based and odometry-based).

로보틱스 연구에서, 모바일 로봇의 모션 제어를 위해서는 로봇의 실제 위치를 정확히 추정하는 것이 중요하다. 이를 위해 본 연구에서는, 두 개의 서로 다른 센서 데이터를 칼만필터로 융합하여 로봇의 위치인식을 개선하는 연구를 진행한다. 칼만필터로 융합한 두 개의 센서 측정값은 카메라 영상으로부터 측정된 모바일 로봇의 전역(global) 위치 좌표(x, y)값과 모바일 로봇 바퀴에 부착된 엔코더로부터 측정된 로봇의 직선 및 각속도 값이다. 다음으로 칼만필터로부터 계산된 모바일 로봇의 위치값을 모바일 로봇의 자세 안정화에 피드백하여 모션 제어의 퍼포먼스를 향상시켰다. 최종적으로 논문에서 제안한 센서융합 위치인식 기술과 모션제어기를 실제 로봇에 적용하여 실험적으로 검증하였다. 또한 모션제어에 단일 센서를 피드백으로 사용한 경우와 칼만필터로 융합한 위치 값을 사용한 경우를 비교하므로 칼만필터 기반 센서 융합 기술을 사용한 경우의 퍼포먼스 향상을 확인하였다.

Keywords

References

  1. Lee, S. and Jeong, B. K., 2015, "Research Trends in Robotics, Control, and Automation Based on 2011- 2014 IEEE ICRA Proceedings (Part I)," Journal of the Korean Society for Precision Engineering, Vol. 32, pp. 233-241.
  2. Kim Y. and Minor, M. A., 2007, "Path Manifoldbased Kinematic Control of Wheeled Mobile Robots Considering Physical Constraints," The International Journal of Robotics Research, Vol. 26, pp. 955-975, September 1. https://doi.org/10.1177/0278364907081231
  3. Kim, Y. and Minor, M. A., "Kinematic Motion Control of Wheeled Mobile Robots Considering Curvature Constraints," in Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, 2008, pp. 2527-2532.
  4. Hwang, W., Park, J., Kwon, H.-I., Anjum, M. L., Kim, J.-H., Lee, C., Kim, K.-S., and Cho, D.-I., Dan, "Vision Tracking System for Mobile Robots Using Two Kalman Filters and a Slip Detector," in Control Automation and Systems (ICCAS), 2010 International Conference on, 2010, pp. 2041-2046.
  5. Lee, J. G. and Lee, Y. S., 1987, "Advanced Kalman Filter - A Survey," pp. 464-469.
  6. Kim Y., 2015, "Motion State Estimation for an Autonomous Vehicle-trailer System Using Kalman Filtering-based Multi-sensor Data Fusion," The Asian international Journal of Life Sciences, vol. ASIA LIFE SCIENCES Supplement 11, pp. 81-92.
  7. Doopalam, T. and Lee, D. J., 2015, "Efficient Kinect Sensor-Based Reactive Path Planning Method for Autonomous Mobile Robots in Dynamic Environments," Transactions of the Korean Society of Mechanical Engineers - A, Vol. 39, pp. 549-559.
  8. Phung, S. L., Bouzerdoum, A. and Chai, D., "A Novel Skin Color Model in YCbCr Color Space and its Application to Human Face Detection," in Image Processing. 2002. Proceedings. 2002 International Conference on, 2002, pp. I-289-I-292 Vol.1.
  9. Arbelaez, P., Maire, M., Fowlkes, C. and Malik, J., 2011, "Contour Detection and Hierarchical Image Segmentation," Pattern Analysis and Machine Intelligence, IEEE Transactions on, Vol. 33, pp. 898-916. https://doi.org/10.1109/TPAMI.2010.161

Cited by

  1. Error Correction of Real-time Situation Recognition using Smart Device vol.19, pp.9, 2018, https://doi.org/10.9728/dcs.2018.19.9.1779