The Wugang banded iron formation (BIF) is located within the Taihua complex at the southern margin of the North China Craton (NCC). In this study, we analyzed major elements and rare-earth elements in iron ores from the Wugang BIF, to study the type of BIFs and their formation mechanism in combination with previously-published data from the literature. We found that the iron ores from the Wugang BIF display two types of banding textures, which can be described as weak banding or no banding. The samples are composed of coarse-grained magnetite, quartz, pyroxene, and amphibole. Based on our geochemical results, mixing of a hydrothermal fluid with sea water led to the precipitation of the Wugang BIF, and there is evidence of crustal contamination. These results, combined with previous literature data, almost all of the iron ores lack Ce anomalies, though some samples show negative Ce anomalies. Our results indicate that the Wugang BIF was formed in a dominantly reducing environment, although the surfaces were relatively oxidized. Geochemical evidence suggests that the Wugang BIF iron ores were formed in a near-shore continental-shelf environment or in a back-arc basin. The BIF is known as interbedded with migmatite, amphibole gneiss, minor quartz and marble, which indicating lack of volcanic materials input. This study, combined with previous results on geochemical interpretation of related wall rock of Wugang BIF, demonstrated that Wugang BIF belongs to Superior-type BIF.
The Dabie-Sulu ultra-high pressure metamorphic (UHPM) zone is commonly suggested to be a collisional belt between the Sino-Korea craton (North China craton) and Yangtze craton (Zhai and Cong, 1996). Two important questions in formulating the tectonic evolution of the northeast Asia are : (1) the boundary between the UHPM zone and the Sino-Korea craton in the Shandong peninsula and (2) the extension of this Chinese UHPM zone into the Korean peninsula. There have been different opinions on the boundary between UHPM zone and the Sino-Korea craton in the Shandong peninsula. For example, the boundary has been suggested to be the Tan-Lu fault (Bai et al., 1993; Wang and Cong, 1996), or Wulian-Rongcheng fault (Cao et al., 1990). Our recent study finds out new evidences, indicating that the possible boundary is the Kunyushan granitoid complex zone, which occurs along the Wulian-Muping fault. Our new evidences are : (1) the basic rocks west to the Kunyushan granitoid zone are high-pressure granulites rather than eclogites (Zhai, 1996) with their Sm-Nd isotopic ages of 1750 Ma and 2788 Ma, representing their retrograde metamorphic and petrogenetic ages, respectively (Li et al., 1997b); (2) the orthogneisses west to the Kunyushan granitoid zone yield 2600-2900 Ma zircon ages and 1600-2020 Ma Rb-Sr and chemical U-Th-total Pb ages, with no younger data (Enami et al., 1993; Ishizaka et al., 1994), having a typical characteristic for the early Precambrian rocks in the Sino-Korea craton; (3) the orthogneisses east to the Kunyushan granitoid zone have 110-320 Ma isotopic ages with a peak value of 180-230 Ma, showing a typical characteristic of metamorphic rocks in the UHPM zone; (4) the Kunyushan granitoid zone consists of numerous granitic bodies, stocks and veins, which have 1900-2000 Ma, 610-710 Ma and 124-180 Ma istotopic ages indicating a long and complicated evolution history of this granitoid zone. There are many lenses and enclosures of metamorphic rocks from the Sino-Korea craton and Sulu UHPM belt in the Kunyushan granitoid zone. Zhai et al. (1998) have defined the Kunyushan granitoid zone as the Jiaodong Boundary complex zone. Some geologists suggested that the UHPM zone extend eastward to the Korea peninsula (Yin and Nie, 1993; Wang and Cong, 1996) and possibly to the Imjingang belt (Chang, 1994; Ree et al., 1996). Unfortunately, there has not been a conclusive evidence indicating that UHPM rocks occur in the Korea peninsula. In this regard, it becomes more important to compare metamorphic rocks in the Shandong peninsula with those in northern and southern Korea peninsula.
The Samyuri area of Jeoksang-myeon, Muju-gun at the Middle Yeongnam Massif consists of granitic gneiss, porphyroblastic gneiss and leucocratic gneiss, which correspond to Precambrian Wonnam Series. Here we discuss a geochemical implication of the data based on major element composition, trace element, rare earth element (REE), Sm-Nd and Rb-Sr isotope systematics of the boring cores in the granite gneiss area. The boring cores are granitic gneiss (including biotite gneiss) and amphibolite. The major and trace element compositions of granitic gneiss and amphibolite suggest that the protolith belongs to TTG (Tonalite-Trondhjemite-Granodiorite) and tholeiitic series, respectively. Chondrte-normalized REE patterns vary in LREE, HREE and Eu anomalies. The granitic gneiss and amphibolite have Sm-Nd whole rock age of $2,026{\pm}230(2{\sigma})$ Ma with an initial Nd isotopic ratio of $0.50979{\pm}0.00028(2{\sigma})$ (initial ${\epsilon}_{Nd}=-4.4$), which suggests that the source material was derived from old crustal material. Particularly, this initial ${\epsilon}$ Nd value belongs to the range of the geochemical evolution of Archean basement in North-China Craton, and also corresponds to the initial Nd isotope evolution line by Lee et al. (2005). In addition, chondrite-normalized REE pattern and initial Nd value of amphibolite are very similar to those of juvenile magma in crustal formation process.
The Cenozoic alkali basalts are distributed over Korea, both on central part as Bangnyeongdo, Ganseong, Pyeongtaek-Asan and Jogongni and also on southernmost part Jejudo. The ultramafic mantle xenoliths carried by Korean alkali basalts are spinel lherzolites. Garnet lherzolite that is more stable at the deeper level has not been reported so far, indicating that the lithospheric thickness under Korea does not reach deep enough to the stable zone of garnet lherzolite. The crustal evolution history of the Korean peninsula, at least some part of it, seemingly started since the Archean, it normally should have lithospheric thickness greater than 150 km. However, the mantle xenoliths carried by the Cenozoic alkali basalts indicate the maximum depth of origination in the much shallower range of 60-90 km. Such significantly thinner lithospheric thickness of the Korean peninsula than expected is quite similar to the case of North China Craton having lithospheric thickness of ca. 80 km in average, suggesting thinning of the lithospheric mantle in a depth scale of a few tens of kilometers during the past geologic time. The main causal events for such significant thinning of the lithospheric mantle can be continental collisional events of Paleoproterozoic and early Mesozoic similar to the case of North China Craton, which are also supported by Paleoproterozoic igneous and metamorphic events during the 1.9-2.0 Ga occurring all over the Korean peninsula and also early Mesozoic continental collisional event which has been discussed on lively arguments.
Musan iron deposit in North Korea and iron deposits in Anshan-Benxi area in China are Archean banded iron formations and included in Longgang block in Eastern block of North China Craton. Host formations of Musan iron deposit and Anshan-Benxi iron mineralized belt are Musan group and Anshan group, respectively. These groups consist of magnetite-bearing quartzite, amphibolite, schist, and migmatite. Host rock of banded iron formation in Musan deposit and Anshan-Benzi mineralized belt is magnetite-bearing quartzite. Shape of ore bodies in Musan deposit is horse's hoof due to the fold while shape of orebodies in Anshan-Benxi mineralized belt is layer. The previous studies revealed the both of banded iron formations are contemporaneously deposited during the late Archean (Musan deposit and iron deposits in Anshan-Benxi area: 2.66-2.52 Ga and 2.55-2.53 Ga, respectively). Musan deposit and iron deposits in Anshan-Benxi mineralized belt belolng to Algoma type BIFs. In conclusion, the characteristics of geology, formation ages, and deposit types of Musan deposit and Anshan-Benxi minerlized belt are very similar.
Here we report major element composition, trace and rare earth element abundance, Sm-Nd and Rb-Sr isotopic composition from Deokgu leucogranite. Chondrite-normalized REE pattern and its Eu anomaly are divided into 3 types systematically, and have close relationship with $SiO_2$ contents. Such geochemical characteristic indicates that the leucogranite was derived by feldspar fractionation from a common source magma. Sm-Nd and Rb-Sr whole rock ages are $1,785{\pm}180Ma$ (initial $^{143}Nd/^{144}Nd\;ratio=0.51003{\pm}0.00016,\;2{\sigma}$; ${\varepsilon}_{Nd}(T)=-5.9$) and $1,735{\pm}260Ma$ (initial $^{87}Sr/^{86}Sr\;ratio=0.702{\pm}0.046,\;2{\sigma}$), respectively. Initial ${\varepsilon}_{Nd}$ value indicates that the magma should be derived from the crustal material. This initial ${\varepsilon}_{Nd}$ value also corresponds well with those from the Precambrian granitoids from North-China Craton rather than those of South-China Craton.
Detrital zircons in iron-bearing quartzite of the Seosan Croup from southeastern part of the Cyeonggi Hassif were analysed for SHRIHP U-Pb ages. Among 42 analyses, 38 data yield concordant ages (less tan 10 % discordancy), and they concentrated at 1781~1898 Ma (n=19), $1781{\sim}1898\;Ma(n=19),\;1935{\sim}1941\;Ma(n=4),\;1996\;Ma,\;2120\;Ma\;2403{\sim}2459\;Ma(n=5)$, 2661 Ma and 3198 Ma. The data indicate that sedimentation of iron-bearing quartzite should be after ca 1.78 Ga (the youngest detrital zircon age), and argue against some of conventional idea that iron-bearing quartzite of the Seosan Group might be correlated with the Archean iron-bearing quartzite in the North China Craton.
Oh, Chang Whan;Lee, Byung Choon;Yi, Sang-Bong;Zhang, Cheng Li
The Journal of the Petrological Society of Korea
/
v.23
no.4
/
pp.293-309
/
2014
The Qinling-Dabie-Sulu-Hongseong-Odesan collision belt was formed by the collision between the North China and South China Cratons during late Permian to Triassic. During the collision, Triassic post-collision igneous rocks regionally intruded in the Qinling and the Hongseong-Odesan collision belts which represent the western and eastern ends of the collision belt, respectively. However, no and minor Triassic post-collision igneous activities occur in the Dabie and Sulu belts respectively. The peak metamorphic pressure conditions along the Qinling-Dabie-Sulu-Hongseong-Odesan belt indicate that the slab break-off occurred at the depth of ultra-high pressure (UHP) metamorphic condition in the Dabie and Sulu belts and at the depths of high pressure (HP) or high pressure granulite (HPG) metamorphic condition in the Qinling and Hongseong-Odesan belts. In the Dabie and Sulu belts the heat supply from the asthenospheric mantle through the gab formed by slab break-off could not cause an extensive melting in the lower continental crust and lithospheric mantle directly below it due to the very deep depth of slab break-off. On the other hand, in the Qinling and Hongseong-Odesan belts, shallower slab break-off caused the emplacement of regional post collision igneous rocks. The post-collision igneous rocks occur in the area to the north of the Mianlu Suture zone in the western Qinling belt and crop out continuously eastwards into the areas to the north of the Shangdan Suture zone in the eastern Qinling belt through the areas within the South Qinling block. This distribution pattern of post collision igneous rocks suggests that the Triassic collision belt in the Mianleu Suture zone may be extended into the Shangdan Suture zone after passing through the South Qinling block instead into the boundary between the South Qinling block and the South China Craton.
The Yeongnam Massif is one of representative basement provinces in the Korean Peninsula, which has experienced high-temperature, low-pressure (HTLP) regional metamorphism and partial melting. Here we reviewed recent developments in Paleoproterozoic (1.87-1.84 Ga) hot orogenesis of the Yeongnam Massif, typified by the granulite-facies metamorphism and partial melting recorded in the HTLP rocks. In particular, spatiotemporal linkage between the metamorphic and magmatic activities, including the Sancheong-Hadong anorthositic magma as a heat source, provides a key to understand the widespread HTLP metamorphism and partial melting in the Yeongnam Massif. Crustal anatexis, resulting from the fluid-present melting and muscovite/biotite dehydration melting, has yielded various types of leucosomes and leucogranites. Zircon and monazite petrochronology, using in-situ U(-Th)-Pb data from the secondary ion mass spectrometry, indicates that the HTLP metamorphism and anatexis lasted over a period of ~15 Ma at ca. 1870-1854 Ma. In addition, a fluid influx event at ca. 1840 Ma was locally recognized by the occurrence of incipient charnockite. Taken together, the Yeongnam Massif preserves a prolonged evolutionary record of the HTLP metamorphism, partial melting, and fluid influx diagnostic for a hot orogen. Such an orogen is linked to the Paleoproterozoic orogeny widespread in the North China Craton, and most likely represents the final phase of crustal evolution in the Columbia/Nuna supercontinent.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.