Fig. 2. Stratigraphic section of the Wugang BIF (Liu et al., 2018).
Fig. 3. Photos of iron ores from the Wugang BIF.
Fig. 4. Photomicrographs of iron ores from the Wugang BIF.
Fig. 5. PAAS (Post Archean Australian Shale)–normalized REY patterns of iron ores from the Wugang BIF (red solid line). Comparable data are (Liu et al., 2018).The values of the high–temperature hydrothermal fluid (Bau and Dulski, 1999) and seawater (Alibo and Nozaki, 1999) are shown for comparison.
Fig. 6. The (Ce/Ce*)SN vs (Pr/Pr*)SN diagram (Bau and Dulski, 1996).
Fig. 7. Elemental ratio plots with three component (Alexander et al., 2008). Comparable data (Liu et al., 2018) are plotted together. The values of the high–temperature hydrothermal fluid (Bau and Dulski, 1999), seawater (Alibo and Nozaki, 1999) and upper continental crust (Rudnick and Gao, 2003) used three end members.
Fig. 1. (a) Geological map of the North China Craton and location of study area, modified after Zhao et al. (2005). (b) Simplified geological map of the Wugang area (Li et al., 2014).
Table 1. Major elements (wt.%) of the Wugang BIF and average BIFs in NCC
Table 2. Rare earth elements (ppm) compositions and their ratios of the Wugang BIF
References
- Alexander, B.W., Bau, M., Andersson, P. and Dulski, P. (2008) Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochimica et Cosmochimica Acta, v.72, p.378-394. https://doi.org/10.1016/j.gca.2007.10.028
- Alibo, D.S. and Nozaki, Y. (1999) Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochimica et Cosmochimica Acta, v.63, p.363-372. https://doi.org/10.1016/S0016-7037(98)00279-8
- Basta, F.F., Maurice, A.E., Fontbote, L. and Favarger, P.-Y. (2011) Petrology and geochemistry of the banded iron formation (BIF) of Wadi Karim and Um Anab, Eastern Desert, Egypt: implications for the origin of Neoproterozoic BIF. Precambrian Research, v.187, p.277-292. https://doi.org/10.1016/j.precamres.2011.03.011
- Bau, M. and Dulski, P. (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman ironformations, Transvaal Supergroup, South Africa. Precambrian Research, v.79, p.37-55. https://doi.org/10.1016/0301-9268(95)00087-9
- Bau, M. and Dulski, P. (1999) Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chemical Geology, v.155, p.77-90. https://doi.org/10.1016/S0009-2541(98)00142-9
- Bekker, A., Slack, J.F., Planavsky, N., Krapez, B., Hofmann, A., Konhauser, K.O. and Rouxel, O.J. (2010) Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Economic Geology, v.105, p.467-508. https://doi.org/10.2113/gsecongeo.105.3.467
- Bolhar, R., Kamber, B.S., Moorbath, S., Fedo, C.M. and Whitehouse, M. (2004) Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planetary Science Letters, v.222, p.43-60. https://doi.org/10.1016/j.epsl.2004.02.016
- Bolhar, R., Van Kranendonk, M.J. and Kamber, B.S. (2005) A trace element study of siderite-jasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara Craton-formation from hydrothermal fluids and shallow seawater. Precambrian Research, v.137, p.93-114. https://doi.org/10.1016/j.precamres.2005.02.001
- Danielson, A., Moller, P. and Dulski, P. (1992) The europium anomalies in banded iron formations and the thermal history of the oceanic crust. Chemical Geology, v.97, p.89-100. https://doi.org/10.1016/0009-2541(92)90137-T
- Diwu, C., Sun, Y., Lin, C. and Wang, H. (2010) LA-(MC)-ICPMS U-Pb zircon geochronology and Lu-Hf isotope compositions of the Taihua complex on the southern margin of the North China Craton. Chinese Science Bulletin, v.55, p.2557-2571. https://doi.org/10.1007/s11434-010-3273-6
- Gross, G.A. (1980) A classification of iron formations based on depositional environments. The Canadian Mineralogist, v.18, p.215-222.
- Han, C., Xiao, W., Su, B., Chen, Z., Zhang, X., Ao, S., Zhang, J., Zhang, Z., Wan, B. and Song, D. (2014) Neoarchean Algoma-type banded iron formations from Eastern Hebei, North China Craton: SHRIMP U-Pb age, origin and tectonic setting. Precambrian Research, v.251, p.212-231. https://doi.org/10.1016/j.precamres.2014.06.019
- Holland, H.D. (1984). The chemical evolution of the atmosphere and oceans. Princeton University Press.
- Huang, X.-L., Niu, Y., Xu, Y.-G., Yang, Q.-J. and Zhong, J.-W. (2010) Geochemistry of TTG and TTG-like gneisses from Lushan-Taihua complex in the southern North China Craton: implications for late Archean crustal accretion. Precambrian Research, v.182, p.43-56. https://doi.org/10.1016/j.precamres.2010.06.020
- Huston, D.L. and Logan, G.A. (2004) Barite, BIFs and bugs: evidence for the evolution of the Earth's early hydrosphere. Earth and Planetary Science Letters, v.220, p.41-55. https://doi.org/10.1016/S0012-821X(04)00034-2
- Isley, A.E. and Abbott, D.H. (1999) Plume?related mafic volcanism and the deposition of banded iron formation. Journal of Geophysical Research: Solid Earth (1978-2012), v.104, p.15461-15477. https://doi.org/10.1029/1999JB900066
- Klein, C. (2005) Some Precambrian banded ironformations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. American Mineralogist, v.90, p.1473-1499. https://doi.org/10.2138/am.2005.1871
- Lan, C., Zhang, L., Zhao, T., Wang, C., Li, H. and Zhou, Y. (2013) Mineral and geochemical characteristics of the Tieshanmiao-type BIF-iron deposit in Wuyang region of Henan Province and its implications for oreforming processes. Acta Petrologica Sinica, v.29, p.2567-2582.
- Lan, T.-G., Fan, H.-R., Santosh, M., Hu, F.-F., Yang, K.-F. and Liu, Y. (2014) U-Pb zircon chronology, geochemistry and isotopes of the Changyi banded iron formation in the eastern Shandong Province: Constraints on BIF genesis and implications for Paleoproterozoic tectonic evolution of the North China Craton. Ore Geology Reviews, v.56, p.472-486. https://doi.org/10.1016/j.oregeorev.2013.06.008
- Li, H., Zhai, M., Zhang, L., Yang, Z., Kapsiotis, A., Zhou, Y., He, J., Wang, C. and Liang, J. (2014) Mineralogical and microfabric characteristics of magnetite in the Wuyang Precambrian BIFs, southern North China Craton: Implications for genesis and depositional processes of the associated BIFs. Journal of Asian Earth Sciences, v.94, p.267-281. https://doi.org/10.1016/j.jseaes.2014.06.003
- Liu, D., Wilde, S.A., Wan, Y., Wang, S., Valley, J.W., Kita, N., Dong, C., Xie, H., Yang, C. and Zhang, Y. (2009) Combined U-Pb, hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern North China Craton reveal multiple events in the Late Mesoarchean-Early Neoarchean. Chemical Geology, v.261, p.140-154. https://doi.org/10.1016/j.chemgeo.2008.10.041
- Liu, L., Zhang, H., Yang, X. and Li, Y. (2018) Age, origin and significance of the Wugang BIF in the Taihua complex, Southern North China Craton. Ore Geology Reviews, v.95, p.880-898. https://doi.org/10.1016/j.oregeorev.2018.04.005
- Lu, J.-S., Wang, G.-D., Wang, H., Chen, H.-X. and Wu, C.-M. (2014) Palaeoproterozoic metamorphic evolution and geochronology of the Wugang block, southeastern terminal of the Trans-North China Orogen. Precambrian Research, v.251, p.197-211. https://doi.org/10.1016/j.precamres.2014.06.015
- McLennan, S. (1989) Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, v.21, p.169-200.
- Nozaki, Y., Zhang, J. and Amakawa, H. (1997) The fractionation between Y and Ho in the marine environment. Earth Planetary Science Letters, v.148, p.329-340. https://doi.org/10.1016/S0012-821X(97)00034-4
- Ohmoto, H. (2003) Nonredox transformations of magnetite-hematite in hydrothermal systems. Economic Geology, v.98, p.157-161. https://doi.org/10.2113/gsecongeo.98.1.157
- Pecoits, E., Gingras, M., Barley, M., Kappler, A., Posth, N. and Konhauser, K. (2009) Petrography and geochemistry of the Dales Gorge banded iron formation: Paragenetic sequence, source and implications for palaeo-ocean chemistry. Precambrian Research, v.172, p.163-187. https://doi.org/10.1016/j.precamres.2009.03.014
- Rudnick, R.L. and Gao, S. (2003). 3.01 - Composition of the Continental Crust. in: Holland, H.D., and Turekian, K.K. (Eds.), Treatise on geochemistry. Pergamon, Oxford, pp. 1-64.
- Sholkovitz, E.R., Landing, W.M. and Lewis, B.L. (1994) Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochimica et Cosmochimica Acta, v.58, p.1567-1579. https://doi.org/10.1016/0016-7037(94)90559-2
- Trendall, A. (2009) The significance of iron-formation in the Precambrian stratigraphic record. Precambrian sedimentary environments: A modern approach to depositional systems, v.33, p.33-66.
- Yao, T., Li, H.-M., Li, W.-J., Li, L.-X. and Zhao, C. (2015) Origin of the disseminated magnetite pyroxenite in the Tieshanmiao-type iron deposits in the Wuyang region of Henan Province, China. Journal of Asian Earth Sciences, v.113, p.1235-1252. https://doi.org/10.1016/j.jseaes.2015.03.050
- Zhai, M. and Santosh, M. (2013) Metallogeny of the North China Craton: link with secular changes in the evolving Earth. Gondwana Research, v.24, p.275-297. https://doi.org/10.1016/j.gr.2013.02.007
- Zhang, X., Zhang, L., Xiang, P., Wan, B. and Pirajno, F. (2011) Zircon U-Pb age, Hf isotopes and geochemistry of Shuichang Algoma-type banded iron-formation, North China Craton: constraints on the ore-forming age and tectonic setting. Gondwana Research, v.20, p.137-148. https://doi.org/10.1016/j.gr.2011.02.008
- Zhao, G., Sun, M., Wilde, S.A. and Sanzhong, L. (2005) Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research, v.136, p.177-202. https://doi.org/10.1016/j.precamres.2004.10.002
- Zhu, M., Dai, Y., Zhang, L., Wang, C. and Liu, L. (2015) Geochronology and geochemistry of the Nanfen iron deposit in the Anshan-Benxi area, North China Craton: Implications for- 2.55 Ga crustal growth and the genesis of high-grade iron ores. Precambrian Research, v.260, p.23-38. https://doi.org/10.1016/j.precamres.2015.01.001