• Title/Summary/Keyword: Normalized Coordinate

Search Result 22, Processing Time 0.011 seconds

Single Photo Resection Using Cosine Law and Three-dimensional Coordinate Transformation (코사인 법칙과 3차원 좌표 변환을 이용한 단사진의 후방교회법)

  • Hong, Song Pyo;Choi, Han Seung;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.189-198
    • /
    • 2019
  • In photogrammetry, single photo resection is a method of determining exterior orientation parameters corresponding to a position and an attitude of a camera at the time of taking a photograph using known interior orientation parameters, ground coordinates, and image coordinates. In this study, we proposed a single photo resection algorithm that determines the exterior orientation parameters of the camera using cosine law and linear equation-based three-dimensional coordinate transformation. The proposed algorithm first calculated the scale between the ground coordinates and the corresponding normalized coordinates using the cosine law. Then, the exterior orientation parameters were determined by applying linear equation-based three-dimensional coordinate transformation using normalized coordinates and ground coordinates considering the calculated scale. The proposed algorithm was not sensitive to the initial values by using the method of dividing the longest distance among the combinations of the ground coordinates and dividing each ground coordinates, although the partial derivative was required for the nonlinear equation. In addition, since the exterior orientation parameters can be determined by using three points, there was a stable advantage in the geometrical arrangement of the control points.

Hybrid Affine Registration Using Intensity Similarity and Feature Similarity for Pathology Detection

  • June-Sik Kim;Ho-Sung Kim;Jong-Min Lee;Jae-Seok Kim;In-Young Kim;Sun I. Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.39-47
    • /
    • 2002
  • The objective of this study is to provide a Precise form of spatial normalization with affine transformation. The quantitative comparison of the brain architecture across different subjects requires a common coordinate system. For the common coordinate system, not only global brain but also a local region of interest should be spatially normalized. Registration using mutual information generally matches the whose brain well. However. a region of interest may not be normalized compared to the feature-based methods with the landmarks. The hybrid method of this Paper utilizes feature information of the local region as well as intensity similarity. Central gray nuclei of a brain including copus callosum, which is used for feature in Schizophrenia detection, is appropriately normalized by the hybrid method. In the results section. our method is compared with mutual information only method and Talairach mapping with schizophrenia Patients. and is shown how it accurately normalizes feature .

A Review on the Vertical Coordinate Systems used in Oceanic and Atmospheric Circulation Numerical Model (해양 및 대기 순환 수치모델에 사용하는 연직 좌표계에 대한 고찰)

  • HyukJin Choi;Shin Taek Jeong;Hong-Yeon Cho;Dong-Hui Ko
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.4
    • /
    • pp.158-166
    • /
    • 2024
  • In a numerical method for the study of the circulation model, various vertical coordinate systems are used to simulate the physical response of the ocean and atmosphere to the increasing greenhouse gas emission. In this study, four types of vertical coordinate systems frequently used in oceanic and atmospheric circulation numerical models, i.e., height, general, pressure, and normalized vertical coordinate systems, respectively are introduced. Finally, the hydrostatic pressure equation, vertical velocity, equation of horizontal motion, and continuity equation expressed in a vertical coordinate system were introduced, and the pros and cons of the vertical coordinate system were summarized to promote the accuracy of numerical model development.

Signatures Verification by Using Nonlinear Quantization Histogram Based on Polar Coordinate of Multidimensional Adjacent Pixel Intensity Difference (다차원 인접화소 간 명암차의 극좌표 기반 비선형 양자화 히스토그램에 의한 서명인식)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.375-382
    • /
    • 2016
  • In this paper, we presents a signatures verification by using the nonlinear quantization histogram of polar coordinate based on multi-dimensional adjacent pixel intensity difference. The multi-dimensional adjacent pixel intensity difference is calculated from an intensity difference between a pair of pixels in a horizontal, vertical, diagonal, and opposite diagonal directions centering around the reference pixel. The polar coordinate is converted from the rectangular coordinate by making a pair of horizontal and vertical difference, and diagonal and opposite diagonal difference, respectively. The nonlinear quantization histogram is also calculated from nonuniformly quantizing the polar coordinate value by using the Lloyd algorithm, which is the recursive method. The polar coordinate histogram of 4-directional intensity difference is applied not only for more considering the corelation between pixels but also for reducing the calculation load by decreasing the number of histogram. The nonlinear quantization is also applied not only to still more reflect an attribute of intensity variations between pixels but also to obtain the low level histogram. The proposed method has been applied to verified 90(3 persons * 30 signatures/person) images of 256*256 pixels based on a matching measures of city-block, Euclidean, ordinal value, and normalized cross-correlation coefficient. The experimental results show that the proposed method has a superior to the linear quantization histogram, and Euclidean distance is also the optimal matching measure.

Localized Positioning method for Optimal path Hierarchical clustering algorithm in Ad hoc network (에드 혹 네트워크에서 노드의 국부 위치 정보를 이용한 최적 계층적 클러스터링 경로 라우팅 알고리즘)

  • Oh, Young-Jun;Lee, Kang-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2550-2556
    • /
    • 2012
  • We proposed the energy-efficient routing algorithm ALPS (Ad hoc network Localized Positioning System) algorithm that is range-free based on the distance information. The routing coordinate method of ALPS algorithm consists of hierarchical cluster routing that provides immediately relative coordinate location using RSSI(Received Signal Strength Indication) information. Existing conventional DV-hop algorithm also to manage based on normalized the range free method, the proposed hierarchical cluster routing algorithm simulation results show more optimized energy consumption sustainable path routing technique to improve the network management.

Development of Convective Cell Identification and Tracking Algorithm using 3-Dimensional Radar Reflectivity Fields (3차원 레이더 반사도를 이용한 대류세포 판별과 추적 알고리즘의 개발)

  • Jung, Sung-Hwa;Lee, GyuWon;Kim, Hyung-Woo;Kuk, BongJae
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.243-256
    • /
    • 2011
  • This paper presents the development of new algorithm for identifying and tracking the convective cells in three dimensional reflectivity fields in Cartesian coordinates. First, the radar volume data in spherical coordinate system has been converted into Cartesian coordinate system by the bilinear interpolation. The three-dimensional convective cell has then been identified as a group of spatially consecutive grid points using reflectivity and volume thresholds. The tracking algorithm utilizes a fuzzy logic with four membership functions and their weights. The four fuzzy parameters of speed, area change ratio, reflectivity change ratio, and axis transformation ratio have been newly defined. In order to make their membership functions, the normalized frequency distributions are calculated using the pairs of manually matched cells in the consecutive radar reflectivity fields. The algorithms have been verified for two convective events in summer season. Results show that the algorithms have properly identified storm cells and tracked the same cells successively. The developed algorithms may provide useful short-term forecasting or nowcasting capability of convective storm cells and provide the statistical characteristics of severe weather.

Feature Extraction in 3-Dimensional Object with Closed-surface using Fourier Transform (Fourier Transform을 이용한 3차원 폐곡면 객체의 특징 벡터 추출)

  • 이준복;김문화;장동식
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.21-26
    • /
    • 2003
  • A new method to realize 3-dimensional object pattern recognition system using Fourier-based feature extractor has been proposed. The procedure to obtain the invariant feature vector is as follows ; A closed surface is generated by tracing the surface of object using the 3-dimensional polar coordinate. The centroidal distances between object's geometrical center and each closed surface points are calculated. The distance vector is translation invariant. The distance vector is normalized, so the result is scale invariant. The Fourier spectrum of each normalized distance vector is calculated, and the spectrum is rotation invariant. The Fourier-based feature generating from above procedure completely eliminates the effect of variations in translation, scale, and rotation of 3-dimensional object with closed-surface. The experimental results show that the proposed method has a high accuracy.

  • PDF

The Comparison of the SIFT Image Descriptor by Contrast Enhancement Algorithms with Various Types of High-resolution Satellite Imagery

  • Choi, Jaw-Wan;Kim, Dae-Sung;Kim, Yong-Min;Han, Dong-Yeob;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.325-333
    • /
    • 2010
  • Image registration involves overlapping images of an identical region and assigning the data into one coordinate system. Image registration has proved important in remote sensing, enabling registered satellite imagery to be used in various applications such as image fusion, change detection and the generation of digital maps. The image descriptor, which extracts matching points from each image, is necessary for automatic registration of remotely sensed data. Using contrast enhancement algorithms such as histogram equalization and image stretching, the normalized data are applied to the image descriptor. Drawing on the different spectral characteristics of high resolution satellite imagery based on sensor type and acquisition date, the applied normalization method can be used to change the results of matching interest point descriptors. In this paper, the matching points by scale invariant feature transformation (SIFT) are extracted using various contrast enhancement algorithms and injection of Gaussian noise. The results of the extracted matching points are compared with the number of correct matching points and matching rates for each point.

Analysis on optical property in the South Sea of Korea by using Satellite Image : Study of Case on red tide occurrence in August 2013 (위성영상을 활용한 한국 남해의 광학적 특성 연구 : 2013년 8월 발생한 적조 사례를 중심으로)

  • Bak, Su-Ho;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.7
    • /
    • pp.723-728
    • /
    • 2016
  • This study is analyzed the optical property of red tide pixel by using Landsat-7 ETM+, Landsat-8 OLI and COMS/GOCI image. In order to sample red tide pixel, Landsat-7, 8 true color image were used and obtained coordinate of red tide pixel in the true color image. Normalized water leaving radiance(nLw) and absorption coefficient were obtained from GOCI image in the same coordinate of the true color image. When red tide was not occurred the main absorption range was 412nm and 660nm but when red tide occurred it was 660nm and absorption coefficient in 412nm are drastically reduced. It made no difference of nLw spectrum between red tide pixel and non red tide pixel in nLw, but the absolute value of nLw was low than non red tide pixel, especially 660nm and 680nm wavelength sharply decrease.

Motion Sensor Data Normalization Algorithm for Pedestrian Pattern Detection (보행 패턴 검출을 위한 동작센서 데이터 정규화 알고리즘)

  • Kim Nam-Jin;Hong Joo-Hyun;Lee Tae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.4
    • /
    • pp.94-102
    • /
    • 2005
  • In this paper, three axial accelerometer was used to develop a small sensor module, which was attached to human body to calculate the acceleration in gravity direction by human motion, when it was positioned in any direction. To measure its wearer's walking or running motion using the sensor module, the acquired sensor data was pre-processed to enable its quantitative analysis. The acquired digital data was transformed to orthogonal coordinate value in three dimension and calculated to be single scalar acceleration data in gravity direction and normalized to be physical unit value. The normalized sensor data was used to detect walking pattern and calculate their step counts. Developed algorithm was implemented in the form of PDA application. The accuracy of the developed sensor to detect step count was about 97% in laboratory experiment.

  • PDF