DOI QR코드

DOI QR Code

A Review on the Vertical Coordinate Systems used in Oceanic and Atmospheric Circulation Numerical Model

해양 및 대기 순환 수치모델에 사용하는 연직 좌표계에 대한 고찰

  • HyukJin Choi (Coast and Ocean Technology Research Institute) ;
  • Shin Taek Jeong (Coast and Ocean Technology Research Institute) ;
  • Hong-Yeon Cho (Marine Bigdata and AI Center, Institute of Ocean Science and Technology, Univ. of Science and Technology) ;
  • Dong-Hui Ko (Ocean Space Development and Energy Research Department, Korea Institute of Ocean Science and Technology)
  • 최혁진 ((주)해안해양기술) ;
  • 정신택 ((주)해안해양기술) ;
  • 조홍연 (한국해양과학기술원 해양빅데이터.AI센터) ;
  • 고동휘 (한국해양과학기술원 해양공간개발.에너지연구부)
  • Received : 2024.07.29
  • Accepted : 2024.08.23
  • Published : 2024.08.31

Abstract

In a numerical method for the study of the circulation model, various vertical coordinate systems are used to simulate the physical response of the ocean and atmosphere to the increasing greenhouse gas emission. In this study, four types of vertical coordinate systems frequently used in oceanic and atmospheric circulation numerical models, i.e., height, general, pressure, and normalized vertical coordinate systems, respectively are introduced. Finally, the hydrostatic pressure equation, vertical velocity, equation of horizontal motion, and continuity equation expressed in a vertical coordinate system were introduced, and the pros and cons of the vertical coordinate system were summarized to promote the accuracy of numerical model development.

순환 모델 연구를 위한 수치 방법에서는, 증가하는 온실가스 배출에 대한 해양과 대기의 물리적 반응을 모의하기 위해 다양한 연직 좌표계를 사용한다. 본 연구에서는 해양 및 대기 순환 수치모델에 자주 사용하는 4종류의 연직좌표계, 즉 고도, 일반, 압력, 그리고 무차원 연직좌표계에 대하여 소개한다. 최종적으로, 연직좌표계로 표현된 정수압 방정식, 연직속도, 수평방향 운동방정식, 그리고 연속방정식을 도입하고, 연직좌표계에 대한 장단점을 정리하여, 수치모형 개발 정확성을 도모하였다.

Keywords

References

  1. Arakawa, A. and Konor, C.S. (1996). Vertical differencing of the primitive equations based on the charney-phillips grid in hybrid v-p vertical coordinates. Mon. Wea. Rev., 124(3), 511-528.  https://doi.org/10.1175/1520-0493(1996)124<0511:VDOTPE>2.0.CO;2
  2. Arakawa, A. and Lamb, V.R. (1977). Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics, 17, 173-265.  https://doi.org/10.1016/B978-0-12-460817-7.50009-4
  3. Chandrasekar, A. (2022). Numerical Methods for Atmospheric and Oceanic Sciences. Cambridge University Press. 
  4. Haidvogel, D.B. and Beckmann, A. (1999). Numerical Ocean Modeling. London, UK, Imperial College Press. 
  5. Haidvogel, D.B., Arango, H., Budgell, W.P., Cornuelle, B.D., Curchitser, E., Di Lorenzo, E., Fennel, K., Geyer, W.R., Hermann, A.J., Lanerolle, L., Levin, J., McWilliams, J.C., Miller, A.J., Moore, A.M., Powell, T.M., Shchepetkin, A.F., Sherwood, C.R., Signell, R.P., Warner, J.C. and Wilkin, J. (2008). Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system. J. Comp. Phys., 227(7), 3595-3624.  https://doi.org/10.1016/j.jcp.2007.06.016
  6. Kalnay, E. (2002) Atmospheric modeling, data assimilation and predictability. Cambridge University Press. 
  7. Kasahara, A. (1974). Various vertical coordinate systems used for numerical weather prediction. Mon. Wea. Rev., 102(7), 509-522.  https://doi.org/10.1175/1520-0493(1974)102<0509:VVCSUF>2.0.CO;2
  8. Klemp, J.B. (2011). A terrain-following coordinate with smoothed coordinate surfaces. Mon. Wea. Rev., 139(7), 2163-2169.  https://doi.org/10.1175/MWR-D-10-05046.1
  9. Kowalik, Z. and Murty, T.S. (1993), Numerical Modeling of Ocean Dynamics. World Scientific. 
  10. Mellor, G., Hakkinen, S., Ezer, T. and Pachen, R. (2002). A generalization of a sigma coordinate ocean model and an intercomparison of model vertical grids. Ocean Forecasting: Conceptual Basis and Applications, 55-72. 
  11. Phillips, N.A. (1957). A coordinate system having some special advantages for numerical forecasting. J. Met. Soc., 14, 184-185.  https://doi.org/10.1175/1520-0469(1957)014<0184:ACSHSS>2.0.CO;2
  12. Shchepetkin, A.F. and McWilliams, J.C. (2003). A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res., 108(C3), 3090. 
  13. Shchepetkin, A.F. and McWilliams, J.C. (2009). Correction and commentary for "Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system" by Haidvogel et al., J. Comp. Phys. 227, pp. 3595-3624, J. Comp. Phys., 228, 8985-9000.  https://doi.org/10.1016/j.jcp.2009.09.002
  14. Simmons, A.J. and Burridge, D.M. (1981). An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109(4), 758-766.  https://doi.org/10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2
  15. Song, Y.T. and Haidvogel, D. (1994). A semi-implicit ocean circulation model using a generalized topography following coordinate system. J. Comput. Phys., 115, 228-244.  https://doi.org/10.1006/jcph.1994.1189
  16. Sundqvist, H. (1979). Vertical coordinates and related discretization. Numerical Methods Used in Atmospheric Models, 2, 3-50. 
  17. Sutcliffe, R.C. (1947) A contribution to the problem of development. Q. J. R. Meteorol. Soc., 73, 370-383.  https://doi.org/10.1002/qj.49707331710