References
- Arakawa, A. and Konor, C.S. (1996). Vertical differencing of the primitive equations based on the charney-phillips grid in hybrid v-p vertical coordinates. Mon. Wea. Rev., 124(3), 511-528. https://doi.org/10.1175/1520-0493(1996)124<0511:VDOTPE>2.0.CO;2
- Arakawa, A. and Lamb, V.R. (1977). Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics, 17, 173-265. https://doi.org/10.1016/B978-0-12-460817-7.50009-4
- Chandrasekar, A. (2022). Numerical Methods for Atmospheric and Oceanic Sciences. Cambridge University Press.
- Haidvogel, D.B. and Beckmann, A. (1999). Numerical Ocean Modeling. London, UK, Imperial College Press.
- Haidvogel, D.B., Arango, H., Budgell, W.P., Cornuelle, B.D., Curchitser, E., Di Lorenzo, E., Fennel, K., Geyer, W.R., Hermann, A.J., Lanerolle, L., Levin, J., McWilliams, J.C., Miller, A.J., Moore, A.M., Powell, T.M., Shchepetkin, A.F., Sherwood, C.R., Signell, R.P., Warner, J.C. and Wilkin, J. (2008). Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system. J. Comp. Phys., 227(7), 3595-3624. https://doi.org/10.1016/j.jcp.2007.06.016
- Kalnay, E. (2002) Atmospheric modeling, data assimilation and predictability. Cambridge University Press.
- Kasahara, A. (1974). Various vertical coordinate systems used for numerical weather prediction. Mon. Wea. Rev., 102(7), 509-522. https://doi.org/10.1175/1520-0493(1974)102<0509:VVCSUF>2.0.CO;2
- Klemp, J.B. (2011). A terrain-following coordinate with smoothed coordinate surfaces. Mon. Wea. Rev., 139(7), 2163-2169. https://doi.org/10.1175/MWR-D-10-05046.1
- Kowalik, Z. and Murty, T.S. (1993), Numerical Modeling of Ocean Dynamics. World Scientific.
- Mellor, G., Hakkinen, S., Ezer, T. and Pachen, R. (2002). A generalization of a sigma coordinate ocean model and an intercomparison of model vertical grids. Ocean Forecasting: Conceptual Basis and Applications, 55-72.
- Phillips, N.A. (1957). A coordinate system having some special advantages for numerical forecasting. J. Met. Soc., 14, 184-185. https://doi.org/10.1175/1520-0469(1957)014<0184:ACSHSS>2.0.CO;2
- Shchepetkin, A.F. and McWilliams, J.C. (2003). A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res., 108(C3), 3090.
- Shchepetkin, A.F. and McWilliams, J.C. (2009). Correction and commentary for "Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system" by Haidvogel et al., J. Comp. Phys. 227, pp. 3595-3624, J. Comp. Phys., 228, 8985-9000. https://doi.org/10.1016/j.jcp.2009.09.002
- Simmons, A.J. and Burridge, D.M. (1981). An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109(4), 758-766. https://doi.org/10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2
- Song, Y.T. and Haidvogel, D. (1994). A semi-implicit ocean circulation model using a generalized topography following coordinate system. J. Comput. Phys., 115, 228-244. https://doi.org/10.1006/jcph.1994.1189
- Sundqvist, H. (1979). Vertical coordinates and related discretization. Numerical Methods Used in Atmospheric Models, 2, 3-50.
- Sutcliffe, R.C. (1947) A contribution to the problem of development. Q. J. R. Meteorol. Soc., 73, 370-383. https://doi.org/10.1002/qj.49707331710