DOI QR코드

DOI QR Code

Hydraulic Model Tests for a Pontoon-Type Floating Structure with a Horizontal Damping Plate

수평 감쇠판이 부착된 폰툰형 부유식 구조물의 수리모형실험

  • Jeongsoo Kim (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Young Taek Kim (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Youn Ju Jeong (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 김정수 (한국건설기술연구원 구조연구본부) ;
  • 김영택 (한국건설기술연구원 수자원하천연구본부) ;
  • 정연주 (한국건설기술연구원 구조연구본부)
  • Received : 2024.04.22
  • Accepted : 2024.08.26
  • Published : 2024.08.31

Abstract

In this study, hydraulic model tests were conducted to investigate the effect of a horizontal damping plate on the motion of the pontoon-type floating structure. The floating structures with and without the horizontal damping plates were fabricated with the scale of 1/20 and their motion responses to the regular and irregular wave conditions were investigated. From the comparison for the responses of each model with 16 wave conditions, it could be known that the damping plate made the response of the the pontoon to be smaller by about 5 to 10 % compared with the normal rectangular pontoon.

본 연구에서는 수평 감쇠판을 부착한 폰툰형 부유식 구조물의 운동 저감 효과를 분석하기 위해 수리모형 실험을 수행하였다. 일반 직사각형 폰툰형 부유식 구조물 및 수평 감쇠판이 부착된 폰툰형 구조물을 1/20의 축척을 적용하여 제작하였고, 규칙파 및 불규칙파 조건에서의 운동 응답을 계측하였다. 실험체별 16개 파랑 조건에 대한 계측 결과의 비교로부터 직사각형 폰툰형 부유체에 수평 감쇠판을 설치한 경우 수평 감쇠판이 설치되지 않는 조건 대비 응답이 평균 5 ~ 10 % 감소시킬 수 있음을 확인하였다.

Keywords

Acknowledgement

본 연구는 서울대학교 부유식인프라연구단을 통한 국토교통부/국토교통과학기술진흥원(과제번호 RS-2023-00250727, 신소재 기반 부유식 구조체 기술개발) 및 과학기술정보통신부/한국건설기술연구원의 연구비지원사업(과제번호 2023-001, 하이브리드 부유체의 해상 적용성 확장을 위한 모듈연결 및 자세 안정성 향상 기술개발)의 지원을 받았습니다.

References

  1. Bezunartea-Barrio A., Fernandez-Ruano S., Maron-Loureiro A., Molinelli-Fernandez E., Moreno-Buron F., Oria-Escudero J., Rios-Tubio J., Soriano-Gomez C., Valea-Peces A., Lopez-Pavon C. and Antonio Souto-Iglesias A. (2020). Scale effects on heave plates for semi submersible floating offshore wind turbines: Case study with a solid plain plate. Journal of Offshore Mechanics and Arctic Engineering, 142(3), 1-9. 
  2. Chen, Z., Wang, Y., Dong, H. and Zheng, B. (2012). Time-domain hydrodynamic analysis of pontoon-plate floating breakwater. Water Science and Engineering, 5(3), 291-303. 
  3. Cho, I.-H. (2011). Hydrodynamic forces characteristics of a circular cylinder with a damping plate. Journal of Ocean Engineering and Technology, 25(1), 1-7 (in Korean). 
  4. Choi, G.-H., Kim, M.-J., Jang, K.-H., Jun, J.-C. and Park, J.-J. (2019). A study of the development of a concrete floating breakwater for an open sea fish farm. Journal of Ocean Engineering and Technology, 33(6), 648-656 (in Korean). 
  5. Hong, S.H. (2012). Analysis on Wave Absorbing Performance of a Square Type Floating Breakwater, Master Thesis, Seoul National University of Science and Technology, Seoul (in Korean). 
  6. Jung, D.H., Kim, H.J., Kim, J.H. and Moon, D.S. (2006). A preliminary experiment study for development of floater of floating breakwater. Journal of Korean Society for Marine Environmental Engineering, 9(3), 141-147 (in Korean). 
  7. Kim, J. and Jeong, Y.-J. (2023). Experimental evaluation on structural analysis of the shear key between concrete-PE modules. Journal of the Society of Disaster Information, 19(3), 545-553 (in Korean). 
  8. KIOST. (2016). Planning Report of construction technology for floating offshore energy platform with offshore wind power. BSPE99367-11084-2, 159-171 (in Korean). 
  9. Lee, D.H., Jeong, Y.J., You, Y.-J. and Park, M. (2013). Characteristic analysis of reduced motion due to the shape of floating structure. Journal of Korean Society of Coastal and Ocean Engineers, 25(6), 357-364 (in Korean). 
  10. Lee, S.-H., Yi, S.H. and Choi, M. (2023). Offshore solar power plant construction technology using concrete floating bodies. Proceeding of 2023 autumn conference of research community of smart-grid in the Korean Institute of Electrical Engineers, Seoul, 51 (in Korean). 
  11. Lim, G.-N., Kim, S.-H. and Kim, D.-Y. (2015). A numerical study on the appendage shape for a heave motion reduction of floating cylindrical structure. Journal of the Korean Society of Marine Environment and Safety, 21(4), 449-456 (in Korean). 
  12. Lopez-Pavon, C. and Souto-Iglesias, A. (2015). Hydrodynamic coefficients and pressure loads on heave plates for semi-submersible floating offshore wind turbines: A comparative analysis using large scale models. Renewable Energy, 81, 864-881. 
  13. Ministry of Oceans and Fisheries. (2021). Climate change threatens port safety, preventing damage through strengthened design, Press Release, https://eiec.kdi.re.kr/policy/materialView.do?num=219706&topic=(in Korean). 
  14. Park, M.S., Jeong, Y.J. and Kim, Y.T. (2022). Hydrodynamic response analysis of hybrid floating structure according to length of damping plate. Journal of Korean Society of Coastal and Ocean Engineers, 34(6), 275-289 (in Korean). 
  15. Sudhakar, S. and Nallayarasu, S. (2014). Hydrodynamic responses of spar hull with single and double heave plates in random waves. International Journal of Ocean System Engineering, 4(1), 1-18.