DOI QR코드

DOI QR Code

Analysis of Resonance Efficiency According to Length and Entrance Depth of Channel Resonance Part of Multi-Resonance Wave Energy Converter

다중공진 파력발전체의 수로 공진부 길이와 입구 깊이별 공진 효율 분석

  • Sukjin Ahn (Coast and Ocean Technology Research Institute) ;
  • Changhoon Lee (Department of Civil & Environmental Engineering, Sejong University) ;
  • Hyen-cheol Jung (Coast and Ocean Technology Research Institute) ;
  • Hyukjin Choi (Coast and Ocean Technology Research Institute)
  • Received : 2023.12.26
  • Accepted : 2024.08.26
  • Published : 2024.08.31

Abstract

Multi-resonance wave energy converter can generate efficient power generation by complexly utilizing the resonance phenomenon of waves even when waves propagate normally. As the wave is amplified by resonance, the power generation efficiency of the multi-resonance wave energy converter increases, and the shape of the resonance part needs to be optimized to maximize power generation efficiency. The multi-resonance wave energy converter amplifies waves in the seiche resonance part and the channel resonance part. In this study, CFD numerical experiments were performed under various conditions such as the length and location of the channel resonance part to analyze the sensitivity for each condition and derve the optimal shape of the channel resonance part.

다중공진 파력발전체는 파랑의 공진현상을 복합적으로 이용하여 실해역의 평상파 내습시에도 파랑을 증폭시켜 효율적인 발전이 가능하다. 공진에 의해 파랑이 증폭될수록 다중공진 파력발전체의 발전 효율이 증가하며, 발전 효율이 최대가 될 수 있도록 공진부의 형상 최적화가 필요하다. 다중공진 파력 발전체는 항만 공진부와 수로 공진부에서 파랑을 증폭시키며, 본 연구에서는 수로 공진부의 길이, 위치 등 다양한 조건에서 CFD 수치실험을 수행하여 조건 별 상관성을 분석하고 수로 공진부의 최적 형상을 도출하였다.

Keywords

Acknowledgement

이 논문은 2023년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(RS-2023-00239837, 유망기술 Scale-up 사업).

References

  1. Engelund, F. (1953). On the laminar and turbulent flow of ground water through homogeneous sand. Transactions of the Danish Academy of Technical Sciences, 3.
  2. Jacobsen, N.G., Fuhrman, D.R. and Fredsoe, J. (2012). A wave generation toolbox for the open-source CFD library: OpenFoam(R). International Journal for Numerical Methods in Fluids, 70, 1073-1088. https://doi.org/10.1002/fld.2726
  3. Kim, J.R., Bae, Y.H. and Cho, I.H. (2014). Design of wave energy extractor with a linear electric generator, Part I. Design of wave power buoy. J. Korean Soc. Mar. Environ. Energy, 17(2), 146-152. https://doi.org/10.7846/JKOSMEE.2014.17.2.146
  4. Lee, C. and Lee, D.S. (2003). Water surface resonance in the L-shaped channel of seawater exchange breakwater. Ocean Engineering, 30(18), 2423-2436. https://doi.org/10.1016/S0029-8018(03)00102-1
  5. Mendez, F., Losada, I. and Losada, M. (2001). Wave-induced mean magnitudes in permeable submerged breakwaters. Journal of Waterway, Port, Coastal and Ocean Engineering, 127, 7-15. https://doi.org/10.1061/(ASCE)0733-950X(2001)127:1(7)
  6. Ministry of Education (2014). Development of highly efficient wave power generation system using combined resonances (in Korean).
  7. Ministry of Trade, Industry and Resources (2020). The 5th Fundamental Plan of Technology Development, Use, and Distribution of Renewable Energy (in Korean).
  8. Raichlen, F. (1966). Harbor resonance. Chapter 7. in: Ippen A.T., Ed. Estuary and Coastline Hydrodynamics, McGraw Hill Book Company, New York.
  9. Wei, G. and Kirby, J. (1995). Time-dependent numerical code for extended Boussinesq equations. Journal of Waterway, Port, Coastal and Ocean Engineering, 121(5), 251-261. https://doi.org/10.1061/(ASCE)0733-950X(1995)121:5(251)