DOI QR코드

DOI QR Code

Wave Pressure and Wave Height Distribution around Seawall Structure Constructed by an Array of TSP Circular Piles

TSP 원형 파일 배열로 조성된 호안 구조물에 작용하는 파압 및 파고 분포

  • Hyun-Ju Han (Faculty of Ocean and Marine Convergence - Ocean System, Jeju National University) ;
  • Woo-Sik Kim (Vice President, THE BRIDGE Co., Ltd) ;
  • Il-Hyoung Cho (Department of Ocean System Engineering, Jeju National University)
  • 한현주 (제주대학교 지구해양융합학부 해양시스템전공) ;
  • 김우식 ((주)더브릿지) ;
  • 조일형 (제주대학교 해양시스템공학과)
  • Received : 2024.07.16
  • Accepted : 2024.08.09
  • Published : 2024.08.31

Abstract

An analytic solution for the interaction between an array of circular piles made by joining trapezoid steel pipes (TSP) and waves was obtained using an eigenfunction expansion method. First, an analytic model for the wave scattering of multiple piles fixed at arbitrary positions was derived, and then a simplified model was obtained assuming that an infinite array of identical piles were deployed perpendicular to the propagating direc- tion of incident waves. A regular wave experiment was conducted using an experimental model with a scale ratio of 1/100 in a two-dimensional wave tank to verify the analytic solutions. The analytic results and experimental results were qualitatively consistent with each other. Using a developed analytic model, we examined the wave force on the multiple piles and the wave deformation in front of the arrayed piles. The period for the installation is greatly reduced as the TSP pile can be prefabricated in a factory. In particular, it is possible to install at the soft seabed. A seawall structure using arrayed TSP piles will be an ideal complement for a concrete seawall in future.

사다리꼴 각관(Trapezoid Steel Pipe, TSP)을 체결하여 만든 원형 파일 배열과 파와의 상호작용에 대한 해 석해를 고유함수전개법을 사용하여 구하였다. 임의의 위치에 고정된 다수의 파일에 의한 파의 산란문제에 대한 해 석모델을 정립하고, 이로부터 입사파의 진행 방향과 수직으로 파일을 일렬로 무한히 배열한 2차원 해석모델을 구 하였다. 해석해를 검증하기 위하여 2차원 조파수조에서 축척비 1/100 갖는 실험모형을 가지고 규칙파 실험을 실시 하여 파일 벽면에서의 파압과 처오름 파를 측정하였다. 해석결과와 모형실험결과는 정성적으로 서로 잘 일치하였 다. 해석모델을 이용하여 다수의 파일에 작용하는 파랑 하중과 배열된 파일 그룹 전면에서의 파형 변화를 살펴보 았다. TSP 원형 파일 배열로 조성된 호안 구조물은 공장에서 미리 제작이 가능하여 시공 기간을 줄일 수 있고 특히 연약 지반에 설치가 가능하므로 기존의 콘크리트 호안 구조물의 보완재로 잠제력을 지니고 있다.

Keywords

Acknowledgement

본 연구는 2024년 (주) 더브릿지의 지원을 받아 수행된 연구결과 중 일부임을 밝히며 연구비 지원에 감사드립니다.

References

  1. Cho, I.H. (2003). Wave control by an array of N bottom-mounted porous cylinders. Journal of Korean Society of Coastal and Ocean Engineers, 15(4), 232-241 (in Korean). 
  2. Cho, I.H. (2009). Wave interaction with a porous circular cylinder of non-uniform porosity. Journal of Korean Society of Coastal and Ocean Engineers, 23(6), 23-31 (in Korean). 
  3. Cho, I.H. (2010). Wave deformation and blocking performance by a porous dual semi-cylindrical structure. Journal of Korean Society of Coastal and Ocean Engineers, 22(1), 10-17 (in Korean). 
  4. Cho, I.H. and Kim, M.H. (2010). Wave deformation and blocking performance by N porous bottom-mounted vertical circular cylinders. Int. J. Offshore Polar Eng., 20(04), 284-291. 
  5. Evans, D.V. and Porter, R. (1999). Trapping and near-trapping by arrays of cylinders in waves. J. Engrg. Math., 35, 149-179. Kagemoto, H. and Yue, D.K.P. (1986). Interaction among multiple  https://doi.org/10.1023/A:1004358725444
  6. three-dimensional bodies in water waves. J. Fluid Mech., 166, 189-209. 
  7. Kashiwagi, M. (2000). Hydrodynamic interaction among a great number of columns supporting a very large flexible structure. J. Fluid and Structure, 14(7), 1013-1034.  https://doi.org/10.1006/jfls.2000.0306
  8. Kim, M.H. (1993). Interaction of waves with N vertical circular cylinders. J. Waterway, Port, Coastal, and Ocean Eng., ASCE, 119(6), 671-689.  https://doi.org/10.1061/(ASCE)0733-950X(1993)119:6(671)
  9. Linton, C.M. and Evans, D.V. (1990). The interaction of waves with arrays of vertical circular cylinders. J. Fluid Mech., 215, 549-569.  https://doi.org/10.1017/S0022112090002750
  10. MacCamy, R.C. and Fuchs, R.A. (1954). Wave forces on piles: A Diffraction Theory. Tech. Memo No.69, U.S. Army Corps of Engineers, Beach Erosion Board. 
  11. Mansard, E.P.D. and Funke, E.R. (1980). The measurement of incident and reflected spectra using a least squares methods. Coastal Engineering Proceedings, 17, 154-172.  https://doi.org/10.1061/9780872622647.008
  12. Maniar, H.D. and Newman, J.N. (1997). Wave diffraction by a long array of cylinders. J. Fluid Mech., 339, 309-330.  https://doi.org/10.1017/S0022112097005296
  13. Ohkusu, M. (1974). Hydrodynamic forces on multiple cylinders in waves. Intl. Symp. on Dynamics of Marine Vehicles and Ocean Structures in Waves, Institute of Mechanical Engineers. 
  14. Spring, B.H. and Evans, D.V. (1984). Approximation of wave forces on cylinder arrays. Applied Ocean Research, 6(2), 101-107.  https://doi.org/10.1016/0141-1187(84)90047-6
  15. Wang, K.H. and Ren, X. (1994). Wave interaction with a concentric porous cylinder system. Ocean Eng., 21(4), 343-360.  https://doi.org/10.1016/0029-8018(94)90009-4
  16. Williams, A.N. and Li, W. (2000). Water wave interaction with an array of bottom-mounted surface-piercing porous cylinders. Ocean Eng., 27(8), 841-866. https://doi.org/10.1016/S0029-8018(99)00004-9