• Title/Summary/Keyword: 파력발전체

Search Result 26, Processing Time 0.026 seconds

Analysis of Resonance Efficiency According to Length and Entrance Depth of Channel Resonance Part of Multi-Resonance Wave Energy Converter (다중공진 파력발전체의 수로 공진부 길이와 입구 깊이별 공진 효율 분석)

  • Sukjin Ahn;Changhoon Lee;Hyen-cheol Jung;Hyukjin Choi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.4
    • /
    • pp.138-148
    • /
    • 2024
  • Multi-resonance wave energy converter can generate efficient power generation by complexly utilizing the resonance phenomenon of waves even when waves propagate normally. As the wave is amplified by resonance, the power generation efficiency of the multi-resonance wave energy converter increases, and the shape of the resonance part needs to be optimized to maximize power generation efficiency. The multi-resonance wave energy converter amplifies waves in the seiche resonance part and the channel resonance part. In this study, CFD numerical experiments were performed under various conditions such as the length and location of the channel resonance part to analyze the sensitivity for each condition and derve the optimal shape of the channel resonance part.

Analysis of Output Power Characteristics for Inshore Wave Power Generation System (연근해 파력발전 시스템의 출력 특성 분석)

  • Han, Sang-Heon;Yoon, Young-Doo;Sung, Yongjun;Choi, Yoon-hoi
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.279-280
    • /
    • 2015
  • 본 논문에서는 연근해 파력발전 시스템을 제안한다. 바다에는 부력체와 동력전달부만을 설치하고, 나머지 시스템은 육상에 설치하여, 기존의 원해 파력발전 시스템에 비해 초비 투자 비용이 저감된다. 연근해 파력발전 시스템의 축소 모형을 제작하였으며, 이를 통해, 연근해 파력발전 시스템의 출력 특성을 분석하였다. 제안된 시스템의 출력 특성이 풍력발전 시스템의 특성과 비슷하게 나타남을 확인할 수 있으며, 실현 가능성이 충분하다고 판단할 수 있다.

  • PDF

Efficiency Analysis of a Wave Power Generation System by Using Multibody Dynamics (다물체동역학을 이용한 다자유도 파력발전시스템의 흡수 효율 분석)

  • Kim, Min Soo;Sohn, Jeong Hyun;Kim, Jung Hee;Sung, Yong Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.557-563
    • /
    • 2016
  • The energy absorption efficiency of a wave power generation system is calculated as the ratio of the wave power to the power of the system. Because absorption efficiency depends on the dynamic behavior of the wave power generation system, a dynamic analysis of the wave power generation system is required to estimate the energy absorption efficiency of the system. In this study, a dynamic analysis of the wave power generation system under wave loads is performed to estimate the energy absorption efficiency. RecurDyn is employed to carry out the dynamic analysis of the system, and the Morison equation is used for the wave load model. According to the results, the lower the wave height and the shorter the period, the higher is the absorption efficiency of the system.

A study for electric power of float-counterweight wave energy converter (복수 연결된 부유체-균형추식 파력발전장치의 전력량에 관한 연구)

  • Lee, Sung-Bum;Hadano, Kesayoshi;Moon, Byung-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.936-942
    • /
    • 2014
  • As a result of the exhaustion of fossil fuel, interest about renewable energy is increasing day by day. Inter alia, study for wave power energy of which the calculability is high and the available amount is abundant is going along actively. As a float-countweight wave energy converter is equivalent improved structural strength compared with oscillating body type. we made the wave only in order to up and down motion by setting up bulkhead which is called wave camber at the outside of float. This paper mainly focuses on generation amount of plural connected float-counterweight wave energy converter and we calculate the amount. The result, we confirmed that the more a numerical value of nl/L increases, the more amount of electricity rises and also when it is over nl/L=0.40, it is possible to get continuous generation. Through this study, we can use as basic data for design of wave chamber on advantageous condition at the real seas and by way of estimation for generation amount.

The Research of Vibration Power Generation with Two Degree of Freedom Using Ocean Wave (파도를 이용한 2자유도 파력진동발전시스템에 대한 연구)

  • Han, Ki-Bong;Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1028-1034
    • /
    • 2011
  • This paper have been studied that ocean wave power vibration generation system with two D.O.F.(degree of freedom) consists of buoy and vibration generation system with two D.O.F. for using efficiency of ocean wave energy. It selected main frequencies ${\omega}_1$, ${\omega}_2$ in frequency with ocean wave and it fitted them to the natural frequencies of vibration system with two D.O.F. in the vibrational power generation system. Then each the relative velocity of between the winding coil and the permanent magnet is faster than the velocity of ocean wave up and down motion by resonance phenomenon. Also the ocean wave power generation with two D.O.F. obtained the more electric energy then the ocean wave power generation with one D.O.F. by coupling effect for two D.O.F. vibration system. Therefore ocean wave power vibration generation system with two degree of freedom that is proposed in this paper has merits which not only using more energy in the ocean wave but also obtaining more electronic energy.

Study on Mobile Wave Energy Harvesting System Utilizing Wave Glider Mechanism (웨이브 글라이더 메커니즘을 이용한 이동형 파력발전 시스템의 성능 테스트와 최적 설계에 관한 연구)

  • Joe, Hangil;Yu, Son-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.393-401
    • /
    • 2018
  • This paper reports a novel mobile-type wave energy harvesting system. The proposed system adopts a wave glider's propulsion mechanism. A wave glider's blades were mounted on a circular layout and generated a rotational motion. Combining the wave converting system with the wave glider, a mobile floating-type robotic buoy system was developed. It enabled the relocation of the buoy position, as well as station-keeping for long term operation. It had a small size and could efficiently harvest wave energy. A feasibility study and modeling were carried out, and a prototype system was constructed. Various tank tests were performed to optimize the proposed wave energy harvesting system.

A study of motion characteristics along the connection methods between the floating body and the wave energy convertor (파력발전기의 가동부유체와 본체 사이의 연결방식에 따른 운동특성 연구)

  • Kim, Sung-Soo;Lee, Jong-Hyun;Kang, Dong-Hoon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.10a
    • /
    • pp.17-18
    • /
    • 2014
  • Wave energy generation system is sorted as oscillating water chamber type, over topping device type and wave activating body type. The wave activating body type converts from wave energy to kinetic of the machine one and the power generation amount increases while the motion of a activating body increases. In this paper the wave energy convertor consists of a main body which has a generation system and the activating body. They are connected by a bar type bridge. The twisting moment and angular velocity at a shaft of convertor are calculated when various condition of the incident wave, a diversity of connection methods between the main body and the activating body. It can be used as basic idea for determining the design of wave activating body type convertor.

  • PDF

Study on the Buoy and Vibration System in Broadband Ocean Wave Power Generator (광대역 파력발전기의 진동시스템과 부양 체에 대한 연구)

  • Lee, Hong-Chan;Yea, Kyung-Soo;Hwang, Sung-Il;Han, Ki-Bong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.780-787
    • /
    • 2012
  • In general, the ocean wave vibration power generator consists of buoy, vibration system and linear generation system. It maximized energy efficiency by using resonance phenomenon that turned to the natural frequency of vibration system and frequency of ocean wave energy. But it is difficult to obtain efficiently energy from ocean wave because the frequency of ocean wave changes from moment to moment. In this paper, we study the buoy and vibration system of ocean wave power generator to solve these problem. Firstly, we designed the buoy that gives rise to resonance between ocean wave and buoy. Secondly, we designed vibration system that is occurred to resonance between buoy and vibration system. And then the relative velocity between the buoy and magnetic of ocean wave vibration generator increases and the relative displacement between buoy and ocean wave decreases at the same time. As a result, the method which is proposed in this paper has merits not only securing its stability from harsh ocean wave environment but also obtaining more kinetic energy from ever-changing ocean wave.

Experimental Study for Wave Energy Convertor using Floating Light Buoy (등부표를 이용한 파력발전에 관한 실험적 연구)

  • Oh, Nam Sun;Jeong, Shin Taek;Ko, Dong Hui
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.50-55
    • /
    • 2015
  • In this paper, wave energy convertors which convert incident wave energy into electric power using floating light buoy are investigated. One-tenth models of a floating light buoy, straight line and seesaw type electric power plant are manufactured and tested in wave flume. In these systems, we measure the horizontal and vertical slope, generated current and power of buoy with different wave heights and periods. This was confirmed the capability of getting electric power, then we suggest further works to get more efficiency.

Topology Optimization Application for Initial Platform Design of 10 MW Grade Floating Type Wave-wind Hybrid Power Generation System (10MW급 부유식 파력-풍력 복합발전 시스템 플랫폼 초기설계를 위한 위상최적화 응용)

  • Song, Chang Yong;Lee, Kangsu;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.3
    • /
    • pp.194-202
    • /
    • 2016
  • This study aims to review a topology optimization based on finite element analysis (FEA) for conceptual design of platform in the 10MW class floating type wave-wind hybrid power generation system (WHPGS). Two topology optimization theories, density method (DM) and homogenization design method (HDM) were used to check which one is more effective for a simplified structural design problem prior to the topology optimization of platform of WHPGS. From the results of the simplified design problem, the HDM was applied to the topology optimization of platform of WHPGS. For the conceptual platform design of WHPGS, FEA model was created and then the structural analysis was performed considering offshore environmental loads at installation site. Hydrodynamics analysis was carried out to calculate pressure on platform and tension forces in mooring lines induced from the offshore environmental loads such as design wave and current. Loading conditions for the structural analysis included the analysis results from the hydrodynamic analysis and the weights of WHPGS. Boundary condition was realized using inertia relief method. The topology optimization of WHPGS platform was performed using the HDM, and then the conceptual arrangement of main structural members was suggested. From the results, it was confirmed that the topology optimization might be a useful tool to design the conceptual arrangement of main structural members for a newly developed offshore structure such as the floating type WHPGS.