DOI QR코드

DOI QR Code

Topology Optimization Application for Initial Platform Design of 10 MW Grade Floating Type Wave-wind Hybrid Power Generation System

10MW급 부유식 파력-풍력 복합발전 시스템 플랫폼 초기설계를 위한 위상최적화 응용

  • Song, Chang Yong (Department of Naval Architecture & Ocean Engineering, Mokpo National University) ;
  • Lee, Kangsu (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering) ;
  • Hong, Keyyong (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering)
  • 송창용 (목포대학교 조선해양공학과) ;
  • 이강수 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 홍기용 (한국해양과학기술원 부설 선박해양플랜트연구소)
  • Received : 2016.04.06
  • Accepted : 2016.06.20
  • Published : 2016.08.25

Abstract

This study aims to review a topology optimization based on finite element analysis (FEA) for conceptual design of platform in the 10MW class floating type wave-wind hybrid power generation system (WHPGS). Two topology optimization theories, density method (DM) and homogenization design method (HDM) were used to check which one is more effective for a simplified structural design problem prior to the topology optimization of platform of WHPGS. From the results of the simplified design problem, the HDM was applied to the topology optimization of platform of WHPGS. For the conceptual platform design of WHPGS, FEA model was created and then the structural analysis was performed considering offshore environmental loads at installation site. Hydrodynamics analysis was carried out to calculate pressure on platform and tension forces in mooring lines induced from the offshore environmental loads such as design wave and current. Loading conditions for the structural analysis included the analysis results from the hydrodynamic analysis and the weights of WHPGS. Boundary condition was realized using inertia relief method. The topology optimization of WHPGS platform was performed using the HDM, and then the conceptual arrangement of main structural members was suggested. From the results, it was confirmed that the topology optimization might be a useful tool to design the conceptual arrangement of main structural members for a newly developed offshore structure such as the floating type WHPGS.

본 연구에서는 10 MW급 부유식 파력-풍력 복합발전 시스템의 플랫폼 초기 개념설계를 위해 유한요소해석 기반 위상 최적화를 검토하였다. 실제 파력-풍력 복합발전 시스템 플랫폼의 위상최적화를 수행하기 전에 단순화된 구조설계 문제를 이용하여 효율적인 위상최적화 이론을 확인하고자 밀도법과 균질화설계법의 두 가지 위상최적화 이론을 적용하였다. 단순화된 설계 문제의 결과로부터 균질화설계법 이론을 파력-풍력 복합발전 시스템의 플랫폼 위상최적화에 적용하였다. 파력-풍력 복합발전 시스템의 플랫폼 개념설계를 위해서 유한요소해석 모델을 생성하고 설치해역의 해양환경하중을 고려하여 구조해석을 수행하였다. 설계파 및 조류와 같은 해양환경하중으로부터 기인하는 플랫폼 상의 압력과 계류삭의 인장력을 산출하기 위하여 동수력학 해석을 수행하였다. 구조해석을 위한 하중조건은 부유체 동수력학 해석으로부터의 결과와 파력-풍력 복합발전 시스템 중량을 고려하였고, 경계조건은 관성제거법을 사용하여 구현하였다. 밀도법 기반 파력-풍력 복합발전 시스템 플랫폼의 위상최적화 결과로부터 개념설계 단계에서 주요 구조부재의 배치방안을 제시하였다. 본 연구결과로부터 위상최적화는 부유식 파력-풍력 복합발전 시스템과 같은 새로운 형식의 해양구조물 개발에 있어서 주요 구조부재 배치의 개념설계에 대해 유용한 설계도구임을 확인하였다.

Keywords

References

  1. Joung, T.H., Nho, I.S., Lee, J.H. and Han, S.H., 2005, "Design optimization of a deep-sea pressure vessel by reliability analysis", J. Ocean Eng. Technol., Vol. 19, 40-46.
  2. Na, S.S., Yum, J.S. and Han, S.M., 2005, "Optimum structural design of D/H tankers by using Pareto optimal based multi-objective function method", J. Soc. Nav. Archit. Korea, Vol. 42, 284-289. https://doi.org/10.3744/SNAK.2005.42.3.284
  3. Ryu, C.H., Lee, J.H. and Yoon, J.S., 2007, "An algorithm on determination of process parameters for roller bending of curved shell plates", J. Soc. Nav. Archit. Korea, Vol. 44, 517-525. https://doi.org/10.3744/SNAK.2007.44.5.517
  4. Lee, J.S. and Han, J.H., 2009, "Multi-objective optimum structural design of marine structure considering the productivity", J. Ocean Eng. Technol., Vol. 23, 1-5.
  5. Song, C.Y., Lee, J. and Choung, J., 2010a, "Strength design of FPSO riser support using moving least squares response surface based approximate optimization methods", J. Ocean Eng. Technol., Vol. 24, 20-33.
  6. Song, C.Y., Choung, J. and Shim, C.S., 2010b, "An application of topology optimization for strength design of FPSO riser support structure, J. Ocean Eng. Technol., Vol. 24, 153-160.
  7. Suzuki, K. and Kikuchi, N., 1991, "A homogenization method for shape and topology optimization", Comput. Methods Appl. Mech. Eng., Vol. 93, 291-318. https://doi.org/10.1016/0045-7825(91)90245-2
  8. Bendsoe, M.P. and Kikuchi, N., 1988, "Generating optimal topologies in structural design using a homogenization method", Comput. Methods Appl. Mech. Eng., Vol. 71, 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
  9. Lim, Y.S., Min, S.J., Yoo, J.H., Terada, K. and Nishiwaki, S., 2006, "Comparative studies of topology optimization using continuous approximation of material distribution", Trans. Korean Soc. Mech. Eng. A, Vol. 30, 164-170. https://doi.org/10.3795/KSME-A.2006.30.2.164
  10. Bendsoe, M.P., 1989, "Optimal shape design as a material distribution problem", Struct. Multidiscipl. Optim., Vol. 1, 193-202. https://doi.org/10.1007/BF01650949
  11. Yoo, J.H., 2001, "Topology optimization of a structure under harmonic excitation caused by magnetic fields", Trans. Korean Soc. Mech. Eng. A, Vol. 25, 1613-1620.
  12. Lee, D.K. and Shin, S.M., 2006, "A study on the decision of optimal deposition of square web-opening using topology optimization technique in beam-to-column structures", J. Archit. Instit. Korea, Vol. 22, 47-54.
  13. Altair Engineering, 2010, "Altair OptiStruct User's Guide Version 11.0", USA.
  14. MSC Software, 2010, "MSC.NASTRAN User's Manual Version 2010", USA.
  15. Kim, K.H., Lee, K., Sohn, J.M., Park, S., Choi, J.S. and Hong, K., 2015, "Conceptual Design of Large Semi-submersible Platform for Wave-Offshore Wind Hybrid Power Generation", J. Korean Soc. Mar. Environ. Energy, Vol. 18, 223-232. https://doi.org/10.7846/JKOSMEE.2015.18.3.223
  16. ANSYS, 2012, "ANSYS/AQWA User's Manual Version 11", USA.
  17. Lee, K.B., Jeong S.H., Cho, J.Y., Kim, J.H. and Park, C.Y., 2015a, "Hard-landing simulation by a hierarchical aircraft landing model and an extended inertia relief technique", Int'l J. of Aeronautical & Space Sci., Vol. 16, 394-406. https://doi.org/10.5139/IJASS.2015.16.3.394
  18. Lee, Y., Ahn, J.S. and Park, G.J., 2015b, "Crash optimization of an automobile frontal structure using equivalent static loads", Trans. Korean Soc. Auto. Eng., Vol. 23, 583-590. https://doi.org/10.7467/KSAE.2015.23.6.583