• 제목/요약/키워드: Noor iteration

검색결과 14건 처리시간 0.017초

CONVERGENCE THEOREMS OF MULTI-STEP ITERATIVE SCHEMES WITH ERRORS FOR ASYMPTOTICALLY QUASI-NONEXPANSIVE TYPE NONSELF MAPPINGS

  • Kim, Jong-Kyu;Saluja, G.S.;Nashine, H.K.
    • East Asian mathematical journal
    • /
    • 제26권1호
    • /
    • pp.81-93
    • /
    • 2010
  • In this paper, a strong convergence theorem of multi-step iterative schemes with errors for asymptotically quasi-nonexpansive type nonself mappings is established in a real uniformly convex Banach space. Our results extend the corresponding results of Wangkeeree [12], Xu and Noor [13], Kim et al.[1,6,7] and many others.

VARIATIONAL DECOMPOSITION METHOD FOR SOLVING SIXTH-ORDER BOUNDARY VALUE PROBLEMS

  • Noor, Muhammad Aslam;Mohyud-Din, Syed Tauseef
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1343-1359
    • /
    • 2009
  • In this paper, we implement a relatively new analytical technique by combining the traditional variational iteration method and the decomposition method which is called as the variational decomposition method (VDM) for solving the sixth-order boundary value problems. The proposed technique is in fact the modification of variatioanal iteration method by coupling it with the so-called Adomian's polynomials. The analytical results of the equations have been obtained in terms of convergent series with easily computable components. Comparisons are made to verify the reliability and accuracy of the proposed algorithm. Several examples are given to check the efficiency of the proposed algorithm. We have also considered an example where the VDM is not reliable.

  • PDF

STRONG CONVERGENCE FOR THREE CLASSES OF UNIFORMLY EQUI-CONTINUOUS AND ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS

  • Qin, Xiaolong;Su, Yongfu;Shang, Meijuan
    • 대한수학회지
    • /
    • 제45권1호
    • /
    • pp.29-40
    • /
    • 2008
  • In this paper, we introduce a modified three-step iteration scheme with errors for three classes of uniformly equi-continuous and asymptotically quasi-nonexpansive mappings in the framework of uniformly convex Banach spaces. We then use this scheme to approximate a common fixed point of these mappings. The results obtained in this paper extend and improve the recent ones announced by Khan, Fukhar-ud-di, Zhou, Cho, Noor and some others.

GENERALIZED 𝛼-NONEXPANSIVE MAPPINGS IN HYPERBOLIC SPACES

  • Kim, Jong Kyu;Dashputre, Samir;Padmavati, Padmavati;Sakure, Kavita
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권3호
    • /
    • pp.449-469
    • /
    • 2022
  • This paper deals with the new iterative algorithm for approximating the fixed point of generalized 𝛼-nonexpansive mappings in a hyperbolic space. We show that the proposed iterative algorithm is faster than all of Picard, Mann, Ishikawa, Noor, Agarwal, Abbas, Thakur and Piri iteration processes for contractive mappings in a Banach space. We also establish some weak and strong convergence theorems for generalized 𝛼-nonexpansive mappings in hyperbolic space. The examples and numerical results are provided in this paper for supporting our main results.