• Title/Summary/Keyword: Nonpoint Pollution

Search Result 288, Processing Time 0.02 seconds

Performance Evaluation of Water Circulation Facilities with Infiltration and Retention Functions (침투 및 저류 기능을 가진 물 순환 시설의 효과 평가)

  • Hong, Jung Sun;Maniquiz-Redillas, Marla C.;Kim, Ree Ho;Lee, Seon Ha;Kim, Lee-Hyung
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.4
    • /
    • pp.305-310
    • /
    • 2015
  • In 2014, the city of Seoul revised the ordinance regarding water-cycle restoration in the Seoul Metropolitan areas by incorporating the 'Low Impact Development (LID)' policy. The new ordinance plan will utilize 630 mm or almost 45 to 50% of annual rainfall until 2050 by means of providing a rainwater management system consisting of infiltration, retention and vegetation. The LID is believed to be the key to achieving the target requirements, specifically in development projects. This research was performed to evaluate the stormwater runoff and pollutant reduction performance of three different LID facilities (water circulation facilities) including an infiltration inlet, bioretention swale, and permeable pavement constructed in Seoul City. Results show that among the water circulation facilities, the permeable pavement achieved the highest runoff reduction as it was able to entirely capture and infiltrate the runoff to the ground. However, in order to attain a long-term performance it is necessary to manage the accumulated sediment and trapped pollutants in the landscape areas through other water circulation techniques such as through soil erosion control. In terms of pollutant reduction capability, the infiltration inlet performed well since it was applied in highly polluted areas. The bioretention facility integrating the physico-chemical and biological mechanisms of soil, microorganisms and plants were able to also achieve a high runoff and pollutant reduction. The water circulation facilities provided not only benefits for water circulation but also various other benefits such as pollutant reduction, ecological restoration, and aesthetic functions.

Development of Integrated Management System of Stormwater Retention and Treatment in Waterside Land for Urban Stream Environment (도시 하천 환경 관리를 위한 제외지 초기 강우 처리 및 저류 시설 종합 관리 시스템 개발)

  • Yin, Zhenhao;Koo, Youngmin;Lee, Eunhyoung;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.126-135
    • /
    • 2015
  • Increase of delivery effect of pollutant loads and surface runoff due to urbanization of catchment area results in serious environmental problems in receiving urban streams. This study aims to develop integrated stormwater management system to assist efficient urban stream flow and water quality control using information from the Storm Water Management Model (SWMM), real time water level and quality monitoring system and remote or automatic treatment facility control system. Based on field observations in the study site, most of the pollutant loads are flushed within 4 hours of the rainfall event. SWMM simulation results indicates that the treatment system can store up to 6 mm of cumulative rainfall in the study catchment area, and this means any type of normal rainfall situation can be treated using the system. Relationship between rainfall amount and fill time were developed for various rainfall duration for operation of stormwater treatment system in this study. This study can further provide inputs of river water quality model and thus can effectively assist integrated water resources management in urban catchment and streams.

A Novel Method to Assess the Aerobic Gasoline Degradation by Indigenous Soil Microbial Community using Microbial Diversity Information (토양 미생물 다양성 지표를 이용한 토착 미생물 군집의 호기성 가솔린 오염분해능력 평가 기법 개발 연구)

  • Hwang, Seoyun;Lee, Nari;Kwon, Hyeji;Park, Joonhong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.839-846
    • /
    • 2016
  • Since oil leakage is one of the most common nonpoint pollution sources that contaminate soil in Korea, the capacity of soil microbial community for degrading petroleum hydrocarbons should be considered to assess the functional value of soil resource. However, conventional methods (e.g., microcosm experiments) to assess the remediation capacity of soil microbial community are costly and time-consuming to cover large area. The present study suggests a new approach to assess the toluene remediation capacity of soil microbial community using a microbial diversity index, which is a simpler detection method than measuring degradation rate. The results showed that Shannon index of microbial community were correlated with specific degradation rate ($V_{max}$), a degradation factor. Subsequently, a correlation equation was generated and applied to Michaelis-Menten kinetics. These results will be useful to conveniently assess the remediation capacity of soil microbial community and can be widely applied to diverse engineering fields including environment-friendly construction engineering fields.

Estimation and Investigation of the Pollutant Delivery Rate of Sapkyo Reservoir (삽교호의 오염물질 유달률 산정 조사 및 평가연구)

  • Lee, Youngshin;Shin, Sanghee;Lee, Taeho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.29-36
    • /
    • 2014
  • The purpose of this study investigates the delivery characteristics according to the load of pollutants by calculating the delivery rate of targeted areas on pollutants in Sapkyo reservoir. The main rivers of Sapkyo reservoir are Namwoncheon, Dogocheon, Sapkyocheon, Muhancheon and Gokgyocheon. The delivery rate and their characteristics of five major rivers during rainfall season are investigated. As th result, biochemical oxygen demand (BOD), total nitrogen (T-N) and total phosphorous (T-P) of total delivery rate are calculated by 0.40, 0.34 and 0.08, respectively. The delivery rate of T-P compares to other water quality is investigated relatively low. Looked at the overall characteristics of the watershed, the delivery rate of T-N and T-P is little change in the rate of the year, too. The delivery rate of T-N is calculated from 0.2 to 0.3 in the dry season, and from 0.31 to 0.39 in a flood, respectively. The delivery rate of T-P is calculated to more than 0.3 in the dry season, and 0.11 in a flood. It is similar values which the average annual delivery rate of T-P is 0.08. Therefore, the measured delivery rate of Sapkyo reservoir can be applicable such as a delivery rate of similar features of the terrain and land use.

Infiltration Rates of Liquid Pig Manure with Various Dilution Ratios in Three Different Soil (돈분액비 토양침투율과 토양내 분포 특성)

  • Shim, Ho-Young;Lee, Kyo-Suk;Lee, Dong-Sung;Jeon, Dae-Sung;Park, Mi-Suk;Shin, Ji-Su;Lee, Yun-Koung;Goo, Ji-Won;Kim, Soo-Bin;Song, Seong-Geun;Chung, Doug-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.3
    • /
    • pp.164-168
    • /
    • 2014
  • BACKGROUND: Increase in application of liquid pig manure(LPM) in agriculture as nutritional source has become a social issue due to its influence on water quality. Also, proper application methods have not been developed with respect to indigenous properties of LPM and soil physical properties. Therefore, we conducted this experiment to observe the infiltration characteristics and distribution of dissolved organic compounds of LPM in soils having different soil textures. METHODS AND RESULTS: To do this experiment, we collected three different soils and LPM. We analyzed the physical and chemical properties of both soils and LPM to determine the dilution ratios of LPM. The LPM diluted to 4 different ratios with distilled water was applied to the top of soil column. Infiltration rates were observed by time and depth until the amount of effluent collected from the bottom of the soil columns were stabilized while maintaining the hydraulic head 3 cm above the soil column. The results showed that infiltration rates increased with increasing dilution ratios in the order of sandy, loamy sand, and sandy loam. The time required to reach steady state was increased with decreasing sand contents clay. CONCLUSION: The size and amount of the dissolved organic compounds in LPM that can determine the efficiency as fertilizer and environmental problems as nonpoint pollution source in water quality have not been investigated with respect to behavior and transport of them in soil. Therefore, it requires further research how we can properly apply LPM as valuable fertilizer substitute for inorganic fertilizers.

Characteristics of Wash-off Metal Pollutants from Highway Toll-Gate Area (고속도로 영업소지역의 강우유출수내 중금속 유출 특성)

  • Lee, Soyoung;Lee, Eunju;Kim, Chulmin;Son, Hyungun;Maniquiz, Marla C.;Son, Youngkyu;Kang, Heeman;Kim, Jeehyeong;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.945-950
    • /
    • 2007
  • The stormwater runoff from paved area are highly polluted because of particulate materials as well as metals from various vehicular activities. The Division of Road Maintenance in Ministry of Construction and Transportation was recently developed the Guidelines of Environment-kindly Road Maintenance. It is actually requiring the BMP construction to control the nonpoint source pollution as based on the TMDL program. This research is carried out in order to define the characteristics of stormwater runoff from the toll-gate of highways since 2006, which is actually one of the main pollutant sources of paved areas. This monitoring is the first phase work for establishing the treatment facilities in the toll-gates. The one of the main characteristics from toll-gate runoff is the first flush phenomenon containing lots of sediments and metal compounds at the beginning of a storm event. Usually it is used to determine the size of treatment facilities and to calculate the reduced pollutant mass in the facility. The research results shows that the mean EMC vaules for heavy metals are determined to $274.3{\mu}g/L$ for Cd, $1,273.4{\mu}g/L$ for Cr, $1,822.0{\mu}g/L$ for Cu, $6,504.9{\mu}g/L$ for Fe, $14,930.3{\mu}g/L$ for Pb, and $714.1{\mu}g/L$ for Zn. Also the metal mass loadings from the toll-gates are calculated using EMC, watershed area and storm duration.

Sediments and Design Considerations in the Forebay of Stormwater Wetland (강우유출수 처리목적 인공습지 침강지의 퇴적물 특성 및 설계 적정성에 관한연구)

  • Park, Kisoo;Cheng, Jing;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.223-235
    • /
    • 2012
  • In this paper, field study results about accumulation of sediments and its property in the forebay of wetland aiming at stormwater from rural area wherein intensive cow feeding lots are operated are provided. In addition, some design aspects are discussed. Amount of sediment generation in the longitudinal direction of forebay was found to be affected by hydrological factors such as rainfall depth and intensity. Nutrient contents in the sediments of this wetland were 10 times higher than those in stormwater wetland in rural area without animal-feeding lot. Total-Pb and As contents show similar level to values from the soils of surrounding watershed, but Total-Cu content was higher due to the animal feeding lots. Yearly amount of sediment generation, its depth and volume were estimated to 13tons, 23cm, and $65m^3$. Based on these results and recommended guideline by Korean Ministry of Environment, dredging frequency was found to be about 2.7years. The shape of forebay has to be carefully designed to deal with a great change in flow rate. According to the results of sediment depth analysis, instead of the present rectangular, wedge-shape forebay is more desirable in handling scouring caused by high flows.

Application of AGNPS Model for Nitrogen and Phosphorus Load in a Stream Draining Small Agricultural Watersheds (소규모 농업유역에서 질소와 인의 하천 부하에 대한 AGNPS 모형의 적용)

  • Kim, Min-Kyeong;Choi, Yun-Yeong;Kim, Bok-Jin;Lim, Jun-Young;Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.3
    • /
    • pp.192-200
    • /
    • 2001
  • The event-based agricultural non-point source(AGNPS) pollution model was applied to estimate the loads of nitrogen and phosphorus in a stream draining small agricultural watersheds. Calibration and verification of the model were performed using observed data collected from rainfall events in the Imgo watersheds during 1997-1998. Parameter calibrations were made for the runoff curve number. The peak flow volumes in the watersheds were well reproduced by the modified model. Average deviation between observed and simulated values was 10%, and this match was confirmed by the coefficient of efficiency value of 0.97. The deviations tended to increase as the peak flows increased. The simulated total N concentrations in the stream water were fairly close to the measured values, and the coefficient of efficiency in the estimation was 0.93. However, there were relatively large variations between calculated and observed values of total P concentration, and the coefficient of efficiency in the estimation was 0.74. Any inaccuracies that arise in estimating runoff flow and nutrient loading can not be explained exactly and further adjustment and refinements may be needed for application of AGNPS in agricultural watersheds. With this restrictions in mind, it can be concluded that AGNPS can provide realistic estimates of nonpoint source nutrient yields.

  • PDF

Environmental Change of Suspended Sediment Discharge by Human Action (인간활동으로 인한 부유토양유출의 환경변화)

  • 박종관
    • Journal of Environmental Science International
    • /
    • v.2 no.2
    • /
    • pp.153-160
    • /
    • 1993
  • The problem of supply and transport of sediment from a mountainous catchment is very important in explaining dynamic geomorphology and the hydrological cycle. The discharge of suspended sediment is determined by a morphological system. Human interference to environment Is also an important, not negligible factor in sediment production. Moreover, growing concern in recent years for the problems of nonpoint pollution and for the transport of contaminants through terrestrial and aquatic ecosystems has highlighted the role of sediment-associated transport in fluvial systems. This study was conducted in forested and quarried catchments in order to clarify the different discharge process and the mechanism of suspended sediment dynamics for each catchment. As a forested catchment, the Yamaguchi River catchment which drains a $3.12km^2$ area was chosen. On the other hand, the Futagami River basin which is formed by three subbasins (1.07, 1.59 and $1.78km^2$), as a quarried catchment was selected. These catchments are situated to the north and east of Mt. Tsukuba, Ibaraki, Japan. The discharge pattern of suspended sediment from the Futagami River basin is more unstable and irregular than that from forested catchment, the Yamaguchi River catchment. Under the similar rainstorm conditions, suspended sediment concentration from quarried catchment during a rainstorm event increases from 43 to 27,340 mg/l. However, in the case of the forested catchment it changes only from nearly zero to 274 mg/l. Generally, the supply source of suspended sediment is classified into two areas, the in-channel and non-channel source areas. As a result of field measurements, in the case of the forested catchment the in-channel (channel bed, channel bank and channel margin) is the main source area of suspended sediment. On the other hand, remarkable sediment source area on the Quarried catchment is the non-channel that is unvegetated ground.

  • PDF

Characteristics of heavy metal concentrations in urban stormwater runoff, Daejeon, Korea (도시 유역 강우유출수 내 중금속 농도의 변화 특성에 관한 연구)

  • Yu, Eunjin;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.917-927
    • /
    • 2018
  • Seven heavy metal concentrations (As, Cd, Cr, Cu, Ni, Pb, Zn) were continuously analyzed for twenty rainfall events in 2017~2018 in an urban basin. The overall and dynamic correlations between runoff characteristics and heavy metal concentrations were examined. The peak metal concentration generally appeared in the initial runoff but found to be delayed when the rainfall intensity was low. The rainfall duration had no relationship with either heavy metal concentrations or their total mass. Dynamics of heavy metal mass (load), with the exception of Cu and Zn, showed strong correlation with the 30 minute rainfall intensity (0.60~0.88) and runoff volume (0.74~0.89). While event mean concentration (EMC) showed positive correlation (0.54~0.73) with antecedent dry days (ADD), no significant relationship was found between runoff volume and pollutant concentration. This implies that the pollutants built up on the surface during dry days are washed off even with low rainfall energy. The dynamics of heavy metal and TSS concentrations showed good correlation (0.68~0.87). This result shows that the metals are transported along with solid particles as adsorbate in surface runoff. Regular street sweeping will reduce significant amount of heavy metal loads in urban surface runoff.