• 제목/요약/키워드: Nonlinear stochastic systems

검색결과 90건 처리시간 0.025초

인터넷 기반 원격제어를 위한 임의의 시간지연을 갖는 지능형 제어기의 설계 (Design of Intelligent Controller with Time Delay for Internet-Based Remote Control)

  • 주영훈;김정찬;이호재;박진배
    • 한국지능시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.293-299
    • /
    • 2003
  • 본 논문은 인터넷 상에서 임의로 변화하는 입력지연을 갖는 불확실 퍼지 시스템의 지능형 강인 퍼지 제어기 설계를 논의한다. 임의로 변화하는 입력지연은 유한개의 상태를 갖는 마코프 확률과정으로 표현된다. 디지털 안정화기를 설계하기 위하여 연속시간 Takagi-Sugeno 퍼지 시스템을 이산화하며 제어기의 입출력단에 영차의 샘플/홀드 함수를 가정한다.이산화된 시스템은 확률적 과정에 따라 변화하는 도약 시스템으로 표현된다. 확률적 강인 안정가능성 조건은 선형 행렬 부등식의 형태로 표현된다.

상태 및 입력 시간지연을 갖는 이산 퍼지 마코비안 점프 시스템의 H 제어 (H Control for Discrete-Time Fuzzy Markovian Jump Systems with State and Input Time Delays)

  • 이갑래
    • 한국지능시스템학회논문지
    • /
    • 제22권1호
    • /
    • pp.28-35
    • /
    • 2012
  • 본 논문에서는 상태변수 및 입력변수에 시간지연을 가지는 이산 퍼지 마코비안 점프 시스템의 $H_{\infty}$ 퍼지 제어기 설계 방법을 나타낸다. 시간지연 퍼지 마코비안 점프 시스템은 마코비안 점프 파라미터를 갖는 시간 지연 비선형 시스템을 Takagi-Sugeno 퍼지 모델로 표현된 것이다. 확률 리아프노프(Lyapunov) 함수를 이용하여 폐루프 시스템이 안정하며 $H_{\infty}$ 성능 조건을 만족하는 조건식을 유도한다. 확률 리아프노프 함수는 시스템 모드에 따라 변하는 함수이다. 유도된 조건식으로부터 제어기 존재 조건을 선형행렬부등식으로 나타내며, 제어기는 선형행렬부등식의 해로부터 직접 구할 수 있다. 수치적 예제 및 컴퓨터 시뮬레이션을 통하여 제안된 방법의 타당성을 보인다.

Numerical evaluation of gamma radiation monitoring

  • Rezaei, Mohsen;Ashoor, Mansour;Sarkhosh, Leila
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.807-817
    • /
    • 2019
  • Airborne Gamma Ray Spectrometry (AGRS) with its important applications such as gathering radiation information of ground surface, geochemistry measuring of the abundance of Potassium, Thorium and Uranium in outer earth layer, environmental and nuclear site surveillance has a key role in the field of nuclear science and human life. The Broyden-Fletcher-Goldfarb-Shanno (BFGS), with its advanced numerical unconstrained nonlinear optimization in collaboration with Artificial Neural Networks (ANNs) provides a noteworthy opportunity for modern AGRS. In this study a new AGRS system empowered by ANN-BFGS has been proposed and evaluated on available empirical AGRS data. To that effect different architectures of adaptive ANN-BFGS were implemented for a sort of published experimental AGRS outputs. The selected approach among of various training methods, with its low iteration cost and nondiagonal scaling allocation is a new powerful algorithm for AGRS data due to its inherent stochastic properties. Experiments were performed by different architectures and trainings, the selected scheme achieved the smallest number of epochs, the minimum Mean Square Error (MSE) and the maximum performance in compare with different types of optimization strategies and algorithms. The proposed method is capable to be implemented on a cost effective and minimum electronic equipment to present its real-time process, which will let it to be used on board a light Unmanned Aerial Vehicle (UAV). The advanced adaptation properties and models of neural network, the training of stochastic process and its implementation on DSP outstands an affordable, reliable and low cost AGRS design. The main outcome of the study shows this method increases the quality of curvature information of AGRS data while cost of the algorithm is reduced in each iteration so the proposed ANN-BFGS is a trustworthy appropriate model for Gamma-ray data reconstruction and analysis based on advanced novel artificial intelligence systems.

Optimal reduction from an initial sensor deployment along the deck of a cable-stayed bridge

  • Casciati, F.;Casciati, S.;Elia, L.;Faravelli, L.
    • Smart Structures and Systems
    • /
    • 제17권3호
    • /
    • pp.523-539
    • /
    • 2016
  • The ambient vibration measurement is an output-data-only dynamic testing where natural excitations are represented, for instance, by winds and typhoons. The modal identification involving output-only measurements requires the use of specific modal identification techniques. This paper presents the application of a reliable method (the Stochastic Subspace Identification - SSI) implemented in a general purpose software. As a criterion toward the robustness of identified modes, a bio-inspired optimization algorithm, with a highly nonlinear objective function, is introduced in order to find the optimal deployment of a reduced number of sensors across a large civil engineering structure for the validation of its modal identification. The Ting Kau Bridge (TKB), one of the longest cable-stayed bridges situated in Hong Kong, is chosen as a case study. The results show that the proposed method catches eigenvalues and eigenvectors even for a reduced number of sensors, without any significant loss of accuracy.

Multiple Path Based Vehicle Routing in Dynamic and Stochastic Transportation Networks

  • Park, Dong-joo
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 2000년도 제37회 학술발표회논문집
    • /
    • pp.25-47
    • /
    • 2000
  • In route guidance systems fastest-path routing has typically been adopted because of its simplicity. However, empirical studies on route choice behavior have shown that drivers use numerous criteria in choosing a route. The objective of this study is to develop computationally efficient algorithms for identifying a manageable subset of the nondominated (i.e. Pareto optimal) paths for real-time vehicle routing which reflect the drivers' preferences and route choice behaviors. We propose two pruning algorithms that reduce the search area based on a context-dependent linear utility function and thus reduce the computation time. The basic notion of the proposed approach is that ⅰ) enumerating all nondominated paths is computationally too expensive, ⅱ) obtaining a stable mathematical representation of the drivers' utility function is theoretically difficult and impractical, and ⅲ) obtaining optimal path given a nonlinear utility function is a NP-hard problem. Consequently, a heuristic two-stage strategy which identifies multiple routes and then select the near-optimal path may be effective and practical. As the first stage, we utilize the relaxation based pruning technique based on an entropy model to recognize and discard most of the nondominated paths that do not reflect the drivers' preference and/or the context-dependency of the preference. In addition, to make sure that paths identified are dissimilar in terms of links used, the number of shared links between routes is limited. We test the proposed algorithms in a large real-life traffic network and show that the algorithms reduce CPU time significantly compared with conventional multi-criteria shortest path algorithms while the attributes of the routes identified reflect drivers' preferences and generic route choice behaviors well.

  • PDF

Vibration characteristics of offshore wind turbine tower with gravity-based foundation under wave excitation

  • Nguyen, Cong-Uy;Lee, So-Young;Huynh, Thanh-Canh;Kim, Heon-Tae;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • 제23권5호
    • /
    • pp.405-420
    • /
    • 2019
  • In this study, vibration characteristics of offshore wind turbine tower (WTT) with gravity-based foundation (GBF) are identified from dynamic responses under wave-induced excitations. The following approaches are implemented to achieve the objective. Firstly, the operational modal analysis methods such as frequency domain decomposition (FDD) and stochastic subspace identification (SSI) are selected to estimate modal parameters from output-only dynamic responses. Secondly, a GBF WTT model composed of superstructure, substructure and foundation is simulated as a case study by using a structural analysis program, MIDAS FEA. Thirdly, wave pressures acting on the WTT structure are established by nonlinear regular waves which are simulated from a computational fluid software, Flow 3D. Wave-induced acceleration responses of the target structure are analyzed by applying the simulated wave pressures to the GBF WTT model. Finally, modal parameters such as natural frequencies and mode shapes are estimated from the output-only acceleration responses and compared with the results from free vibration analysis. The effect of wave height and period on modal parameter extraction is also investigated for the mode identification of the GBF WTT.

A novel grey TMD control for structures subjected to earthquakes

  • Z.Y., Chen;Ruei-Yuan, Wang;Yahui, Meng;Timothy, Chen
    • Earthquakes and Structures
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 2023
  • A model for calculating structure interacted mechanics is proposed. A structural interaction model and controller design based on tuned mass damping (TMD) was developed to control the induced vibration. A key point is to introduce a new analytical model to evaluate the properties of the TMD that recognizes the motion-dependent nonlinear response observed in the simulations. Aiming at the problem of increased current harmonics and low efficiency of permanent magnet synchronous motors for electric vehicles due to dead time effect, a dead time compensation method based on neural network filter and current polarity detection is proposed. Firstly, the DC components and the higher harmonic components of the motor currents are obtained by virtue of what the neural network filters and the extracted harmonic currents are adjusted to the required compensation voltages by virtue of what the neural network filters. Then, the extracted DC components are used for current polarity dead time compensation control to avert the false compensation when currents approach zero. The neural network filter method extracts the required compensation voltages from the speed component and the current polarity detection compensation method obtains the required compensation voltages by discriminating the current polarity. The combination of the two methods can more precisely compensate the dead time effect of the control system to improve the control performance. Furthermore, based on the relaxed method, the intelligent approach of stability criterion can be regulated appropriately and the artificial TMD was found to be effective in reducing cross-wind vibrations.

Iterative-R: A reliability-based calibration framework of response modification factor for steel frames

  • Soleimani-Babakamali, Mohammad Hesam;Nasrollahzadeh, Kourosh;Moghadam, Amin
    • Steel and Composite Structures
    • /
    • 제42권1호
    • /
    • pp.59-74
    • /
    • 2022
  • This study introduces a general reliability-based, performance-based design framework to design frames regarding their uncertainties and user-defined design goals. The Iterative-R method extracted from the main framework can designate a proper R (i.e., response modification factor) satisfying the design goal regarding target reliability index and pre-defined probability of collapse. The proposed methodology is based on FEMA P-695 and can be used for all systems that FEMA P-695 applies. To exemplify the method, multiple three-dimensional, four-story steel special moment-resisting frames are considered. Closed-form relationships are fitted between frames' responses and the modeling parameters. Those fits are used to construct limit state functions to apply reliability analysis methods for design safety assessment and the selection of proper R. The frameworks' unique feature is to consider arbitrarily defined probability density functions of frames' modeling parameters with an insignificant analysis burden. This characteristic enables the alteration in those parameters' distributions to meet the design goal. Furthermore, with sensitivity analysis, the most impactful parameters are identifiable for possible improvements to meet the design goal. In the studied examples, it is revealed that a proper R for frames with different levels of uncertainties could be significantly different from suggested values in design codes, alarming the importance of considering the stochastic behavior of elements' nonlinear behavior.

로트크기에 비례하는 리드타임과 공간 제약을 고려한 재고관리 정책 (An Inventory Problem with Lead Time Proportional to Lot Size and Space Constraint)

  • 이동주
    • 산업경영시스템학회지
    • /
    • 제38권4호
    • /
    • pp.109-116
    • /
    • 2015
  • This paper is concerned with the single vendor single buyer integrated production inventory problem. To make this problem more practical, space restriction and lead time proportional to lot size are considered. Since the space for the inventory is limited in most practical inventory system, the space restriction for the inventory of a vendor and a buyer is considered. As product's quantity to be manufactured by the vendor is increased, the lead time for the order is usually increased. Therefore, lead time for the product is proportional to the order quantity by the buyer. Demand is assumed to be stochastic and the continuous review inventory policy is used by the buyer. If the buyer places an order, then the vendor will start to manufacture products and the products will be transferred to the buyer with equal shipments many times. The mathematical formulation with space restriction for the inventory of a vendor and a buyer is suggested in this paper. This problem is constrained nonlinear integer programming problem. Order quantity, reorder points for the buyer, and the number of shipments are required to be determined. A Lagrangian relaxation approach, a popular solution method for constrained problem, is developed to find lower bound of this problem. Since a Lagrangian relaxation approach cannot guarantee the feasible solution, the solution method based on the Lagrangian relaxation approach is proposed to provide with a good feasible solution. Total costs by the proposed method are pretty close to those by the Lagrangian relaxation approach. Sensitivity analysis for space restriction for the vendor and the buyer is done to figure out the relationships between parameters.

Data driven inverse stochastic models for fiber reinforced concrete

  • Kozar, Ivica;Bede, Natalija;Bogdanic, Anton;Mrakovcic, Silvija
    • Coupled systems mechanics
    • /
    • 제10권6호
    • /
    • pp.509-520
    • /
    • 2021
  • Fiber-reinforced concrete (FRC) is a composite material where small fibers made from steel or polypropylene or similar material are embedded into concrete matrix. In a material model each constituent should be adequately described, especially the interface between the matrix and fibers that is determined with the 'bond-slip' law. 'Bond-slip' law describes relation between the force in a fiber and its displacement. Bond-slip relation is usually obtained from tension laboratory experiments where a fiber is pulled out from a matrix (concrete) block. However, theoretically bond-slip relation could be determined from bending experiments since in bending the fibers in FRC get pulled-out from the concrete matrix. We have performed specially designed laboratory experiments of three-point beam bending with an intention of using experimental data for determination of material parameters. In addition, we have formulated simple layered model for description of the behavior of beams in the three-point bending test. It is not possible to use this 'forward' beam model for extraction of material parameters so an inverse model has been devised. This model is a basis for formulation of an inverse model that could be used for parameter extraction from laboratory tests. The key assumption in the developed inverse solution procedure is that some values in the formulation are known and comprised in the experimental data. The procedure includes measured data and its derivative, the formulation is nonlinear and solution is obtained from an iterative procedure. The proposed method is numerically validated in the example at the end of the paper and it is demonstrated that material parameters could be successfully recovered from measured data.