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ABSTRACT

In route guidance systems fastest-path routing has typically been adopted because of its simplicity.
However, empirical studies on route choice behavior have shown that drivers use numerous criteria
in choosing a route. The objective of this study is to develop computationally efficient algorithms
for identifying a manageable subset of the nondominated (i.e. Pareto optimal) paths for real-time
vehicle routing which reflect the drivers’ preferences and route choice behaviors. We propose two
pruning algorithms that reduce the search area based on a context-dependent linear utility function
and thus reduce the computation time. The basic notion of the proposed approach is that 1)
enumerating all nondominated paths is computationally too expensive, ii) obtaining a stable
mathematical representation of the drivers’ utility function is theoretically difficult and impractical,
and iii) obtaining optimal path given a nonlinear utility function is a NP-hard problem.
Consequently, a heuristic two-stage strategy which identifies multiple routes and then select the
near-optimal path may be effective and practical. As the first stage, we utilize the relaxation based
pruning technique based on an entropy model to recognize and discard most of the nondominated
paths that do not reflect the drivers’ preference and/or the context-dependency of the preference. In
addition, to make sure that paths identified are dissimilar in terms of links used, the number of
shared links between routes is limited. We test the proposed algorithms in a large real-life traffic
network and show that the algorithms reduce CPU time significantly compared with conventional
multi-criteria shortest path algorithms while the attributes of the routes identified reflect drivers’
preferences and generic route choice behaviors well.

I. INTRODUCTION :

Fastest-path routing has typically been adopted in Route Guidance System (RGS)
applications because of its simplicity. However, empirical studies on route choice behavior have
shown that drivers use numerous criteria in choosing a route including, but not limited to, travel
time, number of signals, travel time reliability, safety, familiarity, and congestion (Khattak et al.,
1992; Abdel Aty et al., 1995; Schofer et al., 1997, Wohlschlaeger, 1997). For this purpose, we
need to solve the so called multi-criteria (or attributes) shortest path problem (MCSPP). This
problem also is referred to in the literature as the multiobjective and vector weights shortest path
problem (Sancho, 1988; Current et al., 1990).

There is a rich literature on the MCSPP in the operations research and management
science areas, which is known as an NP-hard problem unless we have a known linear utility
function. However, existing approaches are limited for application in real-time RGS because they
may 1) generate a set of the nondominated paths which usually are unreasonably large, ii) focus on
the computationally efficient approximation of the set of the nondominated paths without
considering the utility function or preference of the driver, iii) require an explicit utility function
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which may be impractical for real-time in-vehicle routing, and/or iv) need direct interaction with
the decision maker (DM).

The central hypothesis of this paper is that there is a need to identify multiple reasonable
alternative paths for the real-time in-vehicle routing if criteria other than the minimum travel time
(or any other single criterion) are to be used. The basic notion of the proposed approach is that i)
enumerating all nondominated paths is computationally too expensive, ii) obtaining a stable
mathematical representation of the driver’s utility function is theoretically difficult and impractical,
iii) obtaining optimal path given a nonlinear utility function is a NP-hard problem, and iv) link
costs are stochastic rather than deterministic. Consequently, a heuristic two-stage strategy which
identifies reasonable multiple routes by considering deterministic components of the link costs and
then select the “near-optimal path” by considering random components of the link costs as well
may be effective and practical. As the first stage, we utilize the relaxation based pruning
technique based on an entropy model to recognize and discard most of the nondominated paths that
do not reflect the driver’s generic preference and the context-dependent preference. That is, we
develop computationally efficient algorithms for identifying a manageable subset of the
nondominated (i.e. Pareto optimal) paths for real-time vehicle routing. We propose two pruning
algorithms that reduce the search area based on a context-dependent linear utility function and thus
reduce the computation time. In addition, to make sure that paths identified are dissimilar in terms
of links used, the number of shared links between routes is limited. The ultimate route choice will
be supported by a fuzzy logic-based decision support system (Rilett and Park, 1999) or will be
made by the driver by direct judgement.

The balance of the paper is organized as follows. In Section II we mathematically
formulate the problem. In Section III, We discuss the modeling assumptions which form the
framework of the proposed approaches. In Section IV we discuss the conceptual framework of
the context-dependent weighting based pruning approach. We then present two algorithms in
Section V. In Section VI, we test the two algorithms on a traffic network from Austin, Texas

under various traffic conditions, and analyze the results. A concluding discussion follows in
Section VII.

H. NOTATIONS AND PROBLEM FORMULATION

Consider a graph, G=(N, A4), composed of a finite set of nodes N and a set of links
AeNxN. Denote the origin node O and the destination node D in the network and let P be the set
of all feasible paths in the network from O to D. Note that we are interested in only acyclic (i.e.
loopless) paths because a cyclic path is not reasonable within the driver route choice context. A
path p from the origin node O to the destination node D is a sequence of links: p={(i,, i,), (i, i), ... ,
(i, 1)}, where the initial node of each link is the same as the terminal node of the preceding link
in the sequence, and i,, ...i;are distinct nodes. With each link (i, j) of the network, associate a
vector of m attributes c; = (c;', ...,c,”)".

The vector attributes corresponding to path p, z(p), is given by z(p)= Z ¢;, and the
G.i)ep ’

value of a path p with respect to i-th attribute is given by z'(p)= Z ¢'y. Then

G.0ep
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z(p) = [zl(p),....,z"'(p)]. Let Z be the set of all attribute vectors z for all the paths in P and H(Z)

be the convex hull of Z. Assume that “less is better” with respect to all objectives, so that path p;is

at least as preferred as path p, if and only if z(p,)<z(p,). We also assume that all components of
link cost vectors are positive.

Definition 1. A path p; €P is a “nondominated path” if there does not exist any other path
p;€P such that Z'<Z', with the inequality being strict for at least one component of z. Note
that the literature also refers to nondominated paths as efficient or Pareto optimal paths.

Using Definition 1, we now formulate the MCSPP without a utility function as (Wiecek and
Hadavas, 1995):

PI: v-min z
st zeZ (1)

Let Z, be the solution set of problem P1. That is, P, is the set of all nondominated paths in P and
Z, is the set of corresponding nondominated attribute vectors.

Definition 2. A path p €Py, is an “extreme nondominated path” if its attribute vector z is on
the boundary of H(Z) (i.e. an extreme point of H).

For example, in the case of two attributes, a path pe P is a extreme nondominated path with
respect to ae(0,1) if avi(p)t(l-a)v(p) < ovi(p)t(l-a)v(p) for all peP such that
vV'(p),v*(p)) #(v'(p:),v(p)). In other words, the extreme nondominated paths minimize convex
combinations of the objectives (i.e. attributes in this paper). Obtaining a path in this set is
computationally equivalent to identifying a shortest path with linear generalized cost or utility
function because each extreme point of H is in some supporting hyperplane to H (Henig, 1985a).
In general, identifying the set of extreme nondominated paths is faster than finding the set of
nondominated paths. Denote Py, as the set of all extreme nondominated paths and Z., as the set of
corresponding extreme nondominated attribute vectors. Then we obtain following relationships:
P.cPcPand Z .cZ c7.

Alternatively, the MCSPP formulation of P1 can be formulated as the multiple objective
linear programming problem listed below:

P2. v-min fix) = [ 4(,..... f,®)] )
st xeX,

where fk(x)¥ Zci’;x,.j, k=1,..,m

(i,j)eAd

X =the set of flows x; along the links in the network satisfying Equation 3:
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(uéix - Q&)& = { 91 foi' Dall ieN-{0,D} 3)
=0orl forall (ij) ed

where x; =1 indicates that hnk (1, j) lies on the solution path and x;=0 otherwise.
Observe that the set Z is the image of the feasible set X under vector-valued mapping
[fi(x),...... f,,(x)] and we refer to Z as the attribute or objective space and X is referred to as the
decision space of P1 and P2.

Let U: R™=R be a real-valued utility function for evaluating each path in the set of P such
that z is preferred to z’ if and only if U(z)>U(z"). Then the utility associated with path p is U(z)
and the MCSPP with a multiattribute utility function is formulated as the following utility function
program:

P3: U
o @

lll. MODELING CONSIDERATIONS AND ASSUMPTIONS
1. Expected Utility Function for the Real-Time in-vehicle Routing Problem

A Multiple Attribute Utility Function (MAUF) (a generalized single-criterion function to
maximize utility or expected utility) has been adopted to represent the DM’s evaluation of the
alternatives in the context of Multiple Criteria Decision Making (MCDM). We present two
propositions about the nature of the utility function in the context of the real-time in-vehicle
routing problem.

Proposition 1. Utility functions in the context of real-time in-vehicle routing are inherently
"nonlinear".

We assume that the marginal rate of substitution is not constant over the entire range of attribute
values. For example, when one minute of route travel time savings may be worth nothing, 10
minutes of savings equals to 1 dollar, and an hour worth of 10 dollars (See also Mirchadani and
Wiecek, 1993; Gabriel and Berstein, 1997; Scott and Bernstein, 1998).

Consider the following two definitions on the shape of the utility function.

Definition 3. A utility function U: R™ =R is "quasiconcave’ iff for all z(p,), z(p,) € R™
such that U(z(p,))<U(z(p.)), U(z(p.)) sU[Az(p.)+(1-M)z(p,)], for all A € [0,1].

Definition 4. A utility function U: R =R is "quasiconvex” iff for all z(p,), z(p,) € R™
such that U(z(p,))>U(z(p,)), U(z(p.)) >U[Az(p.)+(1-A)z(p,)], for all A € [0,1].

That is, for the quasiconcave utility function U[Az(p,)+(1-A)z(p,)]>minimum {U(z(p.)),U(z(p,)},
and similarly for the quasiconvex utility function  U[Az(p,)+(1-A)z(p,)] < maximum
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{U(z(p,),U(z(p,)) }for each A € [0,1]. Now consider Proposition 2.

Proposition 2. A utility function in the context of real-time vehicle routing is either
"quasiconcave’ or “quasiconvex”.

The marginal rate of substitution is not constant by Proposition 1. Moreover, the marginal rate of
substitution is not strictly increasing or decreasing but could change as the absolute value of an
attribute changes. Therefore, it appears that the quasiconcave or quasiconvex form is well suited to
represent the utility function for the real-time vehicle routing problem. Finally, we obtain the
following two theorems and can conclude that all nondominated paths should be considered as
possibilities for the optimal path. In other words, a non-extreme nondominated path may be an
optimal path which makes the problem NP-hard.

Theorem 1. The optimal solution (i.e. optimal path in this paper) exists within the set of
the nondominated paths if a utility function is non-increasing,.
Proof: See the theorem 6.11 in Steuer (1986).0

Theorem 2. The optimal solution does not necessarily exist within the set of extreme
nondominated paths if a utility function is quasiconcave .
Proof: See the proofs of Henig (1985a).0

2. Difficulty of Assessing Utility Function

MAUT assumes the existence of a consistent, absolute utility function. An important
step in the process of identifying the utility function is to verify the existence of relevant
independence assumptions. These assumptions are then used to identify the appropriate form of the
utility function such as (weighted) additive, multiplicative, quasiadditive, multilinear, etc. The two
major assumptions are the “preferential independence (PI)" and "utility independence (UI)" of
attributes. In real-time in-vehicle routing problem, however, it is easy to envision situations which
violate these two assumptions (see Park(1998) for Example).

From a practical perspective, it has been argued that the additive and multiplicative utility
functions are considered as simple and robust approximations of the MAUF when there are more
than four attributes even if they require the independence assumptions (Zeleny, 1982). In fact
because proving the independence assumptions is extremely difficult to perform in practice, many
analysts simply assume that a particular utility decomposition is correct for a given situation. For
example, a number of studies have utilized additive linear utility functions in solving MCSPP or
MCDM problems (White, 1982; Henig, 1985b; Steuer, 1986; Malakooti, 1989). Alternatively,
incorporating direct interaction with the DM in the MCDM or MCSPP have been utilized to

alleviate the difficulty in eliciting the explicit utility function (Zeleny, 1982; Henig, 1985b/1994;
Malakooti, 1989).

3. Relaxing Uniqueness of Utility Function with Context-Dependency of Preference

Another potential pitfall in application of MAUT for the real-time in-vehicle routing is its
basic axiom stating that a DM has unique and stable preferences over various situations. Weber
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(1987) argues that the information requirement for the DM describing the decision situation which
consists of given set of alternatives, a set of objectives (attributes), and the DM’s stable preference
structure is much too strict in most practical applications. This is because the DM cannot
realistically decide on attribute importance until the set of alternatives is completely defined. He
states that MAUT treats the DM’s stable and unstable preference structures alike without inferring
the DM’s uncertainty over the relevance of product attributes from their stated preferences.
Zeleny (1982) pointed out a similar deficiency of MAUT. Motivated by the restrictions of the
assumption of unique utility function, Malakooti (1989) relaxed the assumption of existence of
unique global weights of the additive utility function and proposed a quasiconcave (and
quasiconvex) MAUF which is a generalization of additive MAUFs. The algorithm uses a
combination of local unique or range weights determined by direct interaction with the DM and
linear programming. The algorithm implicitly accounts for the context-dependency of weights by
assuming that different alternatives may have different attributes weights.

<Example 1> illustrates the case under which unique weights of the utility function may
not be assessed with certainty even if the PI assumption holds, and therefore the assumption of

unique and stable preference of the MAUF may not be applicable for real world in-vehicle routing
problems.

Example 1. Assume that three attributes, travel time (TT), distance (DIS), and V/C ratio
(VC), are preferentially independent, and that the utility function of a driver is
approximated by U = - 0.5TT? - 0.3DIS'*- 0.2VC% The maximum values of travel time,
distance, and V/C ratio for this choice are assumed to be 70 minutes, 50 km, and 2.0,
respectively, and TT, DIS, and VC values in the utility function are normalized values
based on the maximum values (i.e. anchor values) of each attribute. Assume three
nondominated routes whose attributes and normalized values are summarized as follows:

s Route A: (60 min., 42 km, 1.5) and (0.86, 0.84, 0.75)

¢ Route B: (62 min., 44 km, 1.2) and (0.89, 0.88, 0.60)

* Route C: (64 min., 47 km, 0.9) and (0.91, 0.94, 0.45)

The utility values of the three routes A, B, and C are -0.71, -0.72, and -0.73, respectively,
and accordingly route A is preferred over routes B and C. In contrast to applying the
approximate utility function directly, assume that the driver is confronted with a choice between
routes A and B only. In this case, because the relative difference of all attributes are not
significantly different from each other, she may reveal a very similar preference to the given utility
function and would prefer route A over route B. Similarly she may prefer route B over route C if
she is given a choice of only routes B and C. However, if she is confronted with routes A and C
only or routes A, B, and C simultaneously, and she feels the relative difference in V/C ratios
among routes compared to those of other attributes is significant, she may put more weight than
previously on the V/C ratios. Accordingly she may prefer route C over route A. That is, in this case,
the so called "intransitivity of preference’ of paired comparisons may occur because the following
preference relationships have been revealed: R*>R? | R®>~R°® and R°>~R*.

The result of Example 1 may be attributed to the "anchor dependency of the preferences’
or "context-dependency of the information or preferences”. That is, if the situation changes from

- 30 -



which the initial utility measurement was based, then the preference may also change. In human
decision making and assessment of intensities of preference, reference objects are not selected
arbitrarily but are characterized by distinct desirable properties. In this sense, anchored scales are
important because people usually express their preferences only with respect to a given reference
peint (or points){(Zeleny, 1982). In Example 1, the travel time may not transmit information to the
driver. There is no sense in claiming that the travel time is important if a particular traveler does
net find it useful as a decision making tool in a given situation. This occurs because the concept of
attribute importance is relative, not absolute, and it depends on the particular set of alternatives
being considered at any one time (Beckwith and Lehmann, 1973; Roy and Vincke, 1981; Giuliano,
1685). More importantly, the distribution of attributes of all alternatives may affect the weights of
all alternatives. In other words, the choice of appropriate anchors will influence the intensity or
even rank order of preferences, which can violate the MAUT’s basic assumptions that i) weights of
attribute importance are somehow fixed (at least temporarily) in the DM’s head, and ii) the weights
are independent of the actual decision situation.

In summary there are essentially two weights for attributes in a given decision situation:
"primary weights” and “secondary weights’. The primary weight is the subjective assessment of the
attributes’ importance, reflecting the DM’s cultural, empirical, psychological, and environmental
history. This is a generic preference which may be directly obtained from a DM for a particular
situation (i.e. journey to work). The secondary weight is the average intrinsic information
generated by the given set of feasible alternatives (Zeleny, 1976/1982). If decision making is
considered as an information-processing activity, most a priori declared weights (i.e. primary
weight) are independent of the actual alternatives and their associated attributes. Consequently, it
turns out that the conventional MAUT may not be the most reliable tool to represent the drivers

route choice behavior. For this reason, we present Proposition 3 which relaxes the uniqueness of
the utility function. ‘

Proposition 3. The utility function within the context of real-time in-vehicle routing is
not consistent or certain but context-or situation-dependent.

Formally,
U-=f(PRg PRp) 5)

where PRy and PR, are DM’s basic (or primary) and context-dependent preferences or utility
functions. Alternatively,

U = f (X 5 X ) ©)

where x/is the i-th attribute value of the j-th alternative, and m and n are the numbers of attributes
and alternatives, respectively, for a given situation.

4. Combining Primary and Context-Dependent Preferences
In MAUT, the additive utility function for m attributes which is independent of a given
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situation is formalized as follows:

U =3 ) )

where m = the number of attributes :
u,(x,) = individual one-attribute utility function of the i-th attribute
w, = a priori (primary) weight for i-th attribute

Denote w; as the context-dependent weight or secondary weight. Then, based on Proposition 3, by

including the context-dependent preferences (i.e. PRp) into the utility function, the utility function
would be

U= 31 ) i) ®)

That is, the optimal weight is a combination of the basic and context-dependent weight. However,
a driver would rely on the following method if she confronts with all alternatives and their
associate attributes for a given trip.

U - f;w;u,<x,-) ©)

where w, is an optimal weight of the i-th attribute. Therefore, if it were possible to directly
obtain the optimal weight, the problem would be solved easily. However, note that to accomplish
this, the entire set of nondominated alternatives (i.e. routes) and their associated attributes would
be required. In the real-time in-vehicle routing problem, there may be hundreds of nondominated
routes between an origin and destination and attribute values may be the function of O-D distance,
level of congestion, time of day, etc. In addition, drivers may have different basic preferences or
utility functions for different trips.

In this context, the former (i.e. Equation 8) appears to be more practical. To solve the
problem using Equation 8, we adopt a two-step process. The first step measures the context-
dependent weight, w*, as will be detailed later and the second step combines the prior and context-
dependent weights into an "optimal’ weight. For the second step, rather than explicitly

combining those two weights, we present Proposition 4 which defines the possible range of the
optimal weights.

Proposition 4. The optimal weight for each attribute, w, , lies between a priori weight
w, and context-dependent weight (or posterior weight), w; .

Mathematically, we can formulate Proposition 4 as follow:

MIN o, w < w' < MaX |, w, Vi 0
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For instance, in Example 1 a driver would decrease the weights for travel time and distance and
increase the weight for V/C ratio. Based on Proposition 4, rather than identifying a single optimal
path, we consider any nondominated path between those two weights as a “context-dependent
nondominated path (CDND)’.

5. Treatment of Diversity in Utility Function: Modularization

Intuitively, a utility function of a driver within the context of route choice could vary for
different trip purposes, departure times, time limitations (or time windows), etc. Therefore, in
contrast to problems which deal with a single situation (e.g. buying a new car), the real-time in-
vehicle routing problem may be extended or interpreted as multiple sub-problems. In this sense,
by including the generic diversity of utility function for the in-vehicle routing problem, we can
reformulate Equations 8 and 9 as follows:

U= z;(w 1S) (ux)1S) = 2;(/ 1) (4)1S) (11)

where S is a given situation for each trip (e.g. trip purpose, departure time, time window, etc.).
Together with the theoretical difficulty in defining a utility function as shown in the preceding

sections, Equation 11 illustrates the difficulty in defining a utility function of a driver for every
situation.

There may be two ways to extract the basic utility function or preference of a driver for
each trip. One strategy may be to use a single universal utility function which can accommodate all
possible trip situations. The other is to employ an utility function for each situation. In this study

we base on the second strategy, and accordingly we assume that a driver can express her basic
preference for each trip given a situation.

IV. CONTEXT-DEPENDENT WEIGHTING-BASED PRUNING TECHNIQUE
1. Entropy-Based Context-Dependent Weighting

Once the set or a subset of feasible alternatives is identified, we can measure the context-
dependent (or posterior) weights (i.e. W° in Equation 8). In this paper we make use of the
entropy-based weighting which is based on the traditional entropy measure proposed by Zeleny
(1976). Assume that a normalized vector Z' = (E" w®),.....7" (p,,)) characterizes the set Z of paths
in terms of the ith attributes, and is defined as:

Z'=) 7(p,), Yi=lm (12)
j=1

where m is the number of attributes and n is the number of alternatives. In Equation 12, the
normalized attribute values are used for comparative purposes although the technique will work if
non-normalized values are used. Note that the scaling factors are chosen so that0< z'(p,)< 1.
The entropy measure of the ith attribute "contrast intensity ” is:

«Z)=-KY, e, 280,

Vi=1m (13)
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In Equation 13, e(Z')> 0. Ifall Z'(p,) are identical for a given attribute i, then
Z'(p,)/Z' =1/n, and e(Z') assumes its maximum value of In» (e, ~Inn). Therefore, we set K
to 1/e,,, sothe e(Z')< 1 for all i. Accordingly, we define Equation 13 as:
1 Z Ei(_lr_?j)lnfi(_ir?,)
Inn VA VA

e(Z')= - , Vi=1lm (14)

Jj=1

We then define the total entropy of Z as Equation 15.

E=Y eZ" 15)
i=1

It can be seen that the context-dependent (or posterior) weights w;, are inversely related to

e(Z')and the summation of the new weights, w’is equal to 1. We then use Equation 16 to
obtain the context-dependent weights.

c_ l—e(Z— i) _ l—e(Z_ ')
[1-e(Z N+[1-eZD)+..+[1-ez™) ™~ E°

Wi

Vi=l, m (16)

In summary, as the normalized attribute values for attribute i become more distinct and
differentiated with respect to other attributes, the corresponding contrast intensity for the attribute
increases. Consequently, the amount of "decision information” contained in and transmitted by
attribute 1 also increases and this decision information is represented by the context-dependent
weight of attribute i. While the entropy model explicitly considers the relative dispersion of an
attribute across all alternatives, the measure of central tendency of the attributes are also factored
into the weight calculation (see Park (1998) for details).

2. Context-Dependent Weighting-Based Pruning

The proposed approach first identifies all single attribute optimal paths (SAOP) by
solving a series of shortest path problems denoted as P4 below. We define a SAOP as a path which
minimizes the cost function with respect to each attribute.

P4 mn clx. Vi
(%;A rr {17

s.t.
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1, i=0
Y X - 0, for all ieN- -10,D)
(i)eA (eA -1, i=D
=0 or 1 for all (ij) eA

-NH

qx

where 1= attribute

Subsequently, we identify the first temporary optimal path (TOP1) based on the primary weight
vector obtained from the driver by solving PS5.

1 2
min (%E:A (wlcg- WG WG ) X (18)
s.t.
> 5 1, i=0
X, - x. =10, for all ieN-{OD}
@Fa ’ gEa?  |-1,7i=D
X; = Oorl foradll (ij) €A
where
w; € W, Vi
m
w.=1

We then apply the entropy-based technique to obtain a context-dependent (or posterior)
weights using the SAOPs’ as anchor points. <Figure 1> shows how the proposed approach prunes
the search area based on the a priori weights and posterior weights. The isoquant based on the a
priori weight (IPRW) (i.e. utility contour line or preference indifference line) reflects the a priori
weight obtained from a driver. Observe that because we use an additive linear utility function to
approximate the nonlinear utility function, the IPRW is linear. As discussed above, a primary or a
priori weight for an attribute may increase or decrease. If the weight of the primary attribute (i.e.
time) decreases in the posterior situation, an “isoquant’, referred to here as the isoquant with the
posterior weights (IPOW1), forms a triangular area E (TOP1, e and f) in which any nondominated
path would be a proper alternative path according to the drivers’ preference. Note that triangle H
(TOP1, g, and h) is an infeasible region because if a path were to exist in this area it should have
been identified as a TOP1 instead of the current TOP1 by P5.
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<Figure 1> Context-Dependent Feasible Region

If the weight of the primary attribute increases, we may define an isoquant, referred to as
IPOW?2, where any nondominated path within the trapezoid F (SAOP1, j, TOP1, and g) may be
considered as a viable alternative path. Triangle G (TOPI, i, and e) is an infeasible region.
Conversely, we consider the triangle C (a, SAOP1 and TOP1) and Trapezoid D (TOP1, c, SAOP2,
and f) to be context-dependent dominated regions because any nondominated path within these
regions are dominated not only by the IPRW but also by the IPOW1(2). Of course, a path within
rectangle A is dominated by TOP1. To summarize, by introducing the context-dependent
domination concept, we can explicitly reflect the context-dependent preference and basic
preference and reduce the search area. Based on this approach, we introduce a new type of
dominance concept.

Definition 5. Denote the utility value of path p with respect to weight W as Ug(z(p)).
A path pis a "context-dependent dominated path (CDDP)’ if and only if it is dominated
by TOP1 with respect to not only the a priori weighting (W), i.e. Uy(z(p))>U(z(TOP1)),
but also the posterior weighting (W), ie. U, .(z(p))> U,.(z2(TOP1)). Conversely, a

path p is a "context-dependent nondominated path (CDNP)’ if it is not dominated by
TOP1 with respect to the a priori and the posterior weights simultaneously.

Denote P, as the set of all CDNP. If p, is context-dependently dominated by p,, denote
that p,> p,. Then we can say that the set of CDNP, P, , is a subset of the set of the
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nondominated paths, P,. In <Figure 1>, the feasible regions in which a nondominated path with
respect to the TOP1 with a priori weight exists includes regions of C, D, E, and F. These regions
clearly include the feasible regions, E and F, in which CDNP path may exist. In extreme cases
when the posterior weights provide emphasis on only the first or second attributes, a CDNP can
exist within D and E, and C and F, which is still a subset of the feasible regions of the
nondominated paths. Therefore, the following relationships are obtained: P.cP,cP and ZcZ.cZ.
Note that now we can can identify non-extreme nondominated paths as alternative paths (i.e.
CDNP) by incorporating context-dependent dominance concept, which is impossible if only a
linear utility function is used.

Based on Definition 5, we can formulate the following constraint which prunes the
context-dependent infeasible region and results in a reduced search area.

(%E:A lccl1 wzcc.?+ ..... wie") % < Up. (ATOPI)) (19)

where
w'e We Vi

m
Y w1

i=1

The next step, therefore, is to identify other CDNP by solving problem P6 until there are no more
feasible paths in the context-dependent feasible region.

P6: mn z (Wl +w2 o AW ) X (20)
s.t.
twl cj WsCh ... Wi ) x; < Upe (ATOPI))
1, i=0
X; 2 X = o Jor all EN-0,D}
(ijeA GieA 1, i=D

X; = 0 orl forall (ij) €A

where
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3. Unique and Reasonable Alternative Paths

We introduce an important concept of "route uniqueness and reasonableness" in the
context of real-time in-vehicle routing. The point is that the drivers may not consider a route as an
viable or reasonable alternative route over the previous one if an alternative path is too "similar" to
a previously identified path in terms of the links used, or if an alternative path has an unreasonable
route attribute. In this sense we propose Definitions 6 and 7.

Definition 6. A path is a unique alternative path if it is dissimilar in terms of links used
with respect to other such paths.

Definition 7. A path is a reasonable alternative path if it not only has "acceptable
attribute value(s)" but also is "unique" in terms of links used with respect to other such
paths.

Identifying reasonable alternative path is a NP-Complete problem. Intuitively identifying a path
which has acceptable attributes value(s) and is unique in terms of links used from others depends
on the number of paths required, the characteristics of the network (i.e. level of congestion), and
particular O-D pair, etc. Therefore, we may not know a priori how much an alternative path
should be different from paths previously found. Therefore the most reliable approach would be to
1) identify all feasible paths, ii) examine their associated attribute value(s) and uniqueness, and iii)
obtain a compromise solution which satisfies the two requirements simultaneously. Therefore, the
computation time therefore grows exponentially with the number of nodes, which indicates that the
problem is NP-complete (Warburton, 1983).

In this study we assume that CDNP have acceptable attribute values. We thus propose
following definition.

Definition 8. A path is a reasonable context-dependent nondominated path (RCDNP) if
and only if a path is a CDNP and unique with respect to those of other such paths. -

We then treat RCDNP as the "reasonable alternative path" in this study.

To identify unique path, we apply the concept of "3-similar path" originally proposed by
Scott et al. (1997) and formulate the following constraint. Instead of a number of shared links, we
use weighted average of shared links by shared link lengths. That is, the following constraint limits
the maximum ratio of the lengths of the shared links to the total route length between the k-th and
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1-th paths. This notion would be more acceptable that Scott et al. &s in that links may have different
lengths in transportation networks.

k.1
x L
[XHIXIL (1§A iy <5 1)
L L¥ “

where X’ = set of links consisting of /-th path
x,, =1 iflink (i, j) is on the /-th path, otherwise 0.
L* = route length of k-th path
I; = length of link (i,j)

Consequently, we now reformulate the proposed problem for identifying RCDNP as Equation 22

Note that we solve P7 to identify the k-th RCDNP and repeat this procedure to identify new such
paths.

P7. mn Y, [w1 +w2 : cy"’) X (22)
(ieA
s.t.
Y (wi'cyrwici+.swie) %, < Up. (ATOP))
(ed
.ZAx xyly
% < d, Vi, I+k
5 5 1, i=0
X; - 0 Jor all ieN-{0,}
T T -1, i=D
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V. SOLUTION ALGORITHMS
1. Algorithm 1: Labeling-Based Branch-and-Bound Approach

To solve P7, we need to make use of a CSPP solution algorithm. The existing CSPP
algorithms can be broadly classified into two groups: 1) a Lagrangian relaxation approach
(Handler and Zang, 1980; Scott et al., 1997) and a branch-and-bound approach (Morin and
Marsten, 1976; Aneja et al., 1983). The Lagrangian relaxation approach brings the constraints
into the objective function with scalar multipliers, and identifies lower and upper bounds of the
Lagrangian multipliers by solving a series of SPP. The best multipliers are identified by using a
k-shortest path algorithm which satisfies the constraints (i.e. closing the duality gap). Assume that
we have found out the "k-1"-th RCDNP and we are interested in the k-th such a path. If we employ
the Lagrangian relaxation approach for the algorithm, P7 would be reformulated into P8 by
incorporating Lagrangian multipliers.

P8:m(l§4 (wlc,.]l- +w2c,] WG j”’ryd( 2 (w +w2 AWeCy . UW,(z(TOPI)))
E xl xl ) Z yy E k-lx'kll (23)
+AL§ o2 IO I P i E Y
L? L

L!
s.t.
1, i=0
X5 - X, =10, for all ieN-{O.D}
GFA T GiRA -1, i=D 3y
x;=0orl Sfor all (i) eA
where
w, €W, Vi
w’ eWe, Vi
m
2wl
il
m
w=1

1
i=1
The additional terms in the objective function serve to penalize violations of the constraints and for
any particular A’s, the solution to P8 serves as a lower bound to P7. Observe that when we
identify the first RCDNP (i.e. except TOP1), we are confronted with two constraints: one for
context-dependent nondominance (i.e. Inequality 19) and the other for route uniqueness (i.e.
Inequality 21). However, as we identify more alternative paths, the number of constraints also
increases due to the requirement that all of RCDNP be dissimilar with respect to each other. As
shown in Equation 23, when we are interested in identifying the k-th path we need to find out "k”
Lagrangian multipliers. In short to identify k" RCDNP, we need "(k*+k-2)/2" Lagrangian
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multipliers (i.e. 2+3+....+k). In addition, due to the difficulty of finding the & value, we may have
to repeat the same procedures with different & values.

In the first step, rather than solving P8 directly, Algorithm 1 identifies all CDNP. Assume
that we need to identify as many as "I RCDNP and we have identified k" such paths by solving
P8. If k is greater than I', we choose k number of RCDNP from the set of CDNP by solving
subproblem P9. If k is less than "I, we don’t solve P9. That is, we relax the definition of
reasonable alternative path so that we do not concern about the uniqueness requirement in case if
the number of alternative paths which satisfy the reasonable attribute value requirement is less than
or equal to the number of required reasonable alternative paths. Note that Algorithm 1 does not
discard the TOP1 by keeping it as an anchor path when solving P9.

P9 a’gnmé A = [61,2, 61’3, ceey 6110 ........ ,6k_1k]

24
st =T @)

where

Instead of solving a series of the CSPP’s, Algorithm 1 identifies nodes which do not
satisfy constraint (19), and then ignores them in the labeling procedures rather than identifying all
nondominated paths. As will be shown later, branch-and-bound techniques fathom a significant
portion of the nodes or links searched. Assume that there are “n” number of paths from the origin
to node j and from node j to destination. Denote Q(j) and ®(j) be the set of all paths leading from
the origin to node j and those leading from node j to the destination, respectively. Let w,()€Q()
be the k-th path from the origin to node j and ¢,(j)e®@(j) be a path from node j to the destination,
and denote z(wy(j)) be vector attributes of w,(j)and similarly z(¢$,(j)) the vector attributes of ().
For each node j, denote that . (j)and ¢,.(j)be the path which has the maximum utility value

with respect to posterior weight vector, W*, from the origin to node j and from node j to the
destination, respectively, as shown in Equations 25 and 26.

wpdi)=argnax [Up. (@) Upe @ - Uy o) oG  (25)

b)) =argmax [Up. (210D} Upe (2S00, - Uy (&, 00} ¢4)e@()  (26)

Note that Equations 25 and 26 can be solved easily using conventional shortest path algorithm with
posterior weights, similar to P5. We then obtain Inequality 27 to check the context-dependent
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dominance of the best path using node j with respect to TOP1; if Inequality 27 holds, any path
from the origin to node j should be deleted from the vector labeling because any entire path
including the k-th path from the origin to the destination will be context-dependent dominated.
Thus only "context-dependent nondominated” solutions arriving at a node would be kept until the
final stage of calculations and all subpaths that satisfy Inequality 27 are discarded.

Up- [(TOPI)] < Upde(wp)+AdpdD)),  0p()eQ(), I @27

Denote P, to be a set of RCDNP, and k is number of RCDNP. The proposed algorithm
1 is outlined as follows. Hansen (1980)’s algorithm is utilized for solving MCSPP in Step 3.

STEP 1. Initialization
' e P... = @, and k=0.
« Obtain m attributes to be considered and a priori weight, W =(w,,w, ,...., W,),
from a driver.
STEP 2. Identifying SAOP
« Identify single attribute optimal paths, SAOPs, by solving P4 for all attributes.
STEP 3. Identifying the First RCDNP (TOP1) by a Priori Weight
3.1 k=k+1. Identify the first TOP1 by solving P5.
32 Insert TOP1 into Pycy.
STEP 4. Identifying Context-Dependent Feasible Region and Pruning
4.1 Obtain posterior weight using entropy model.
42 Identify context-dependent feasible region by applying SPP with Posterior weight.
43 Prune nodes that are not within the feasible region '
STEP 5. Identifying CDNP using Conventional Labeling-based MCSPP Algorithm
5.1 Extend labeling within feasible region and obtain nondominated subpaths
for each node using Hansen (1980)’s MCSPP algorithm.
52 If current subpath is context-dependent dominated by TOP1, delete it. If not, keep it.
53 If destination is reached, GOTO Step 6. Otherwise, GOTO Step 5.1
STEP 6. Identifying RCDNP
6.1 If the number of CDNP is less than or equal to I', then k=k+1 and insert all CDNP
into Py and STOP.
6.2 If not, identify the number of required paths by solving P9, and insert all RCDNP
into Py and STOP.

2. Algorithm 2: Algorithm 1 with Hierarchical Search
Algorithm 2 uses a hierarchical search method combined with Algorithm 1. The basic idea
of the hierarchical search is to concentrate the search on those links that have a higher functional

classification, before examining links with a lower classification (see Park and Rilett, 1997 for
details).

VI. COMPUTATIONAL EXPERIENCE: CASE STUDIES
1. Experimental Design

We tested the proposed two MCSPP algorithms using the Austin, Texas network. The
Austin network consists of 4,463 nodes and 7760 links. One thousand O-D pairs were randomly
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chosen for this analysis. Travel time, distance, hierarchy, congestion, and travel time reliability,
were used as route attributes. We coded the two algorithms in FORTRAN. Due to the difficulty
in obtaining real-time travel time information, different volume to capacity ratios (V/C) were
assumed for different functional classifications. We assumed three congestion levels (i.e. three
scenarios),I(low), II(middle), and II(high) to capture the effect of the level of congestion.

To measure congestion, we used "relative congestion " which is estimated by the difference
between acceptable speed and actual speed to the acceptable speed. The actual speed was defined
as the speed in the level of service C. The travel time reliability was based on empirical results
from a previous link travel time forecasting studies (Park and Rilett, 1998; Park et al., 1999). We
summarized the attributes and their associated a priori weights in <Table 1>. Hereafter, unless
mentioned otherwise, congestion level III is assumed.

<Table 2> Attributes Considered and Their Associated A Priori Weights

Number of Travel Distance Hierarch Congestion | Travel Time
Attributes Time Reliability
Two Yes (0.70)* | Yes (0.30) No No No
Three Yes (0.60) | Yes (0.20) | Yes (0.20) No No
Four Yes (0.55) | Yes (0.15) | Yes (0.15) | Yes (0.15) No
Five Yes (0.45) | Yes (0.15) | Yes (0.15) | Yes (0.15) | Yes (0.15)

* A priori weight value for the corresponding attribute

2. Analysis of Results
1) Nondominated Paths versus Context-Dependent Nondominated Paths

As expected, the number of nondominated paths was found to increase rapidly as the
number of attributes increases. The average number of nondominated paths with two, three, four,
and five attributes were 11.9, 43.6, 129.8, and 231.5, respectively. It may be also seen that the
number of nondominated paths increases as the O-D distance increases.

The average number of CDNP of Algorithm 1 is significantly smaller than the number of
nondominated paths from the conventional exact algorithm. The average number of CDNP with
the attributes of two, three, four, and five were 2.0, 9.5, 24.6, and 46.2, respectively. These results
correspond to a relative 83.2, 78.2, 81.0, and 80.0 percent reduction in alternative paths when
compared with the number of nondominated paths from the conventional labeling-based MCSPP
algorithm with two, three, four, and five attributes, respectively. It can be seen that as the number
of attributes increases, the relative reduction in the number of paths also increases.

The average number of CDNP from Algorithm 2 were smaller than those from the
conventional MCSPP algorithm and Algorithm 1. The average number of CDNP from Algorithm 2
for situations including two, three, four, and five attributes were 1.6, 3.9, 82, and 12.1,
respectively. These results correspond to a relative 20.0, 58.9, 66.7, and 73.9 percent reduction
compared with Algorithm 1 with two, three, four, and five attributes, respectively.

It is also important to examine the computational complexity of the proposed algorithms
compared to the conventional exact MCSPP algorithm. The average number of nodes label-set by
the conventional exact algorithm with two, three, four, and five attributes are 1312.2, 1568.2,
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1848.5, and 1941.7, respectively. However, Algorithm 1 labeled only 147.3, 185.4, 314.9, and
452.7 nodes when using two, three, four, and five attributes, respectively. That is, Algorithm 1
only label-set 11.2 % (with two attributes) and 23.3 % (with five attributes) as many nodes as the
conventional algorithm. As was expected, it was found that Algorithm 2 searched approximately
20~30 % of the nodes searched by Algorithm 1.

2) Effect of Congestion Level

To examine the effect of congestion level on the number of CDNP, we implemented
Algorithm 2 under three different levels of congestion, I, I, and IIl. It was found that the average
number of CDNP increases significantly as the level of congestion changes from II to III, while the
changes are very marginal between I and II. The average number of CDNP under congestions I, 11,
and III are 2.9, 4.5, and 12.1, respectively. These results may be attributed to the fact that when the
congestion is light, the likelihood of a particular path’s domination over other paths in terms of all
attributes increases.

3) Reasonable Context-Dependent Nondominated Paths from Algorithm 2

It is also useful to examine the route and attributes characteristics from the set of RCDNP.
To solve P9, we set "I" to five. The effect of "uniqueness’ requirement can be observed from the
O-D pairs which have more than five CDNP. The average route similarity from those O-D pairs is
0.58, which is significantly less than those of i) the CDNP (i.e. 0.72), ii) the RCDNP (i.e. 0.68),
and iii) the CDNP from the O-D pairs which have less than or equal to five CDNP (i.e. 0.79).
The COV values of the travel time, distance, link type, congestion, and travel time reliability of the
RCDNP are 0.08, 0.07, 0.12, 0.25, and 0.15, respectively. The tradeoff between route uniqueness
and COV values of the attributes indicates that as a cost of having more unique routes, multiple
alternative routes have wider variations in attribute values.

The reasonableness of Algorithm 2 can be recognized by comparing the route similarity of
the RCDNP and that of the paths from the traditional k-shortest path algorithm. That is, the route
similarity of the RCDNP is 0.68 while that of the traditional k-shortest path algorithm is 0.77 (Park
and Rilett, 1997). Note that the traditional k-shortest path algorithm can consider only one attribute,
and thereby significant portion of the paths from it may be dominated paths that cannot be
considered as reasonable alternative paths. That is, RCDNP are more unique in terms of route
similarity and better in terms of route attributes than muitiple paths from the conventional k-
shortest path algorithm. We also found that the fuzzy logic-based decision support system which
was applied to the RCDNP from Algorithm 2 identified other RCDNP rather than TOP1 as the
best path 43.1 percent of time. In that case the travel times of the best paths (i.e. non-TOP1) were
very similar to those of the TOP1's (Park, 1998; Rilett & Park, 1999). To summarize, the results
from proposed algorithm appear to be promising in that i) they can reduce significantly the search
area and significantly reduce the computational complexity while taking into account the driver’s
generic (or basic) and context-dependency of the preferences simultaneously, and ii) they can
identify a manageable number of reasonable alternative paths.



Vil. CONCLUDING REMARKS

When the utility function of a driver is quasiconcave or when the link costs are nonadditive,
complete enumeration of nondominated paths is the only procedure that can guarantee a global
optimum in the vector weights traffic networks. In addition, to explicit driver’s utility function in
the context of real-time in-vehicle routing is impractical and difficult from both a theoretical and
practical perspective. As a practical alternative, we developed two heuristic algorithms which
identify manageable number of reasonable alternative paths. We designed the algorithms to reflect
not only drivers generic preferences but also the context-dependency of the preference which is
measured by entropy model. The key is in the use of additive utility function and relaxation based
pruning techniques. This greatly reduces the size of search area of the network while measurably
increasing computational efficiency. To make sure that paths are dissimilar in terms of links used,
we limited the route similarity.

From the large real world test problems, we found that the proposed algorithms were
acceptable in terms of the computational complexity and they showed a significant reduction in
computational complexity compared with the conventional labeling-based multi-criteria shortest
path algorithm. The proposed algorithms would also be advantageous in that i) they can identify
non-extreme nondominated paths as alternative routes for selection which is impossible with an
weighted linear utility function or additive weighting method, ii) we don’t need to obtain the exact
nonlinear utility function, and iii) standard labeling based exact MCSPP algorithm can be used
without solving a series of multiple constrained shortest path problems.

While the results of the proposed approaches are promising, a number of issues still need to
be resolved before the algorithms can be implemented. This study did not take into account turn
penalty as a link/route cost. Obviously, it is required that the algorithms be enhanced such that they
can include it in identifying reasonable alternative paths. It would be also important to update the
proposed approaches such that they can apply the first and second stochastic dominance concepts

in order to combine travel time and travel time reliability rather than treating them as independent
attributes.
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