• 제목/요약/키워드: Nonlinear magnetic bearing

검색결과 30건 처리시간 0.026초

Hertzian contact force에 의한 HDD pivot ball bearing의 동적 반응 분석 (Dynamic response of a HDD pivot ball bearing acted by Hertzian contact force)

  • 윤주영;박노철;임건엽;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.993-993
    • /
    • 2014
  • Increasing the density magnetic recording of a hard disk drive needs to improve position control of a slider. We have troubles analyzing position of a slider by nonlinear property of pivot ball bearing. Many researches analyze a hard disk drive to change pivot ball bearing part from balls to springs. Pivot ball bearing operates by rotation and movement of balls. This study considers Hertzian contact force when balls contact with outer race to analyze nonlinear movement of a ball bearing. Experiment of this study measures movement of a circular center of a pivot ball bearing. We also verify the simulation results and the experiment results.

  • PDF

마그네틱 베어링의 가변구조제어 (Variable structure control of a magnetic bearing)

  • 이대종;박장환;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.419-422
    • /
    • 1996
  • In this paper, we consider variable structure controller design of a active magnetic bearing(AMB). In particular, we design a switching hyperplane, considering coupling characteristic among each magnet. This method is designed by applying decentralized control method. Controller design consist of two factors that is, one is linear control part to drive state variables to zero asymptotically and the other is a nonlinear controller part to maintain within neighborhood of switching hyperplane. Finally, A control method designed here is checked by simulation, which shows good results.

  • PDF

Fuzzy Control of Magnetic Bearing System Using Modified PDC Algorithm

  • Joongseon Joh;Lee, Sangmin
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.337-342
    • /
    • 1998
  • A new fuzzy control algorithm for the control of active magnetic bearing (AMB) systems is proposed in this paper. It combines PDC design of Joh et al. [8][9] and Namdani-gype control rules using fuzzy singletons to handle the nonlinear characteristics of AMB systems efficiently. They are named fine mode control and rough mode control , respectively. The rough mode control yields the fastest response for large deviation of the rotor and the fine mode control fives desired transient response for small deviation of the rotor. The proposed algorithm is applied a AMB systems to verify the performance of the method, The comparison of the proposed method to a linear controller using a linearized model about the equilibrium point and PDC algorithm in [7] show the superiority of the proposed algorithm.

  • PDF

원추형 능동 자기베어링계의 모형화 및 제어 (Modeling and Control of Cone-Shaped Active Magnetic Bearing System)

  • 정호섭;김철순;이종원
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3073-3082
    • /
    • 1993
  • A magnetically suspended robot joint is developed, which is free of dust and oil generation. Two radial bearings consisting of cone-shaped magnet cores control the rotor motion in the axial and radial directions. A linearized dynamic model is developed for active control of the magnetic bearing system. The control algorithm is constructed such that the axial displacement of the joint is controlled by radial control current to the pairs of facing radial bearings. The stability and control performance is tested through numerical simulation based on the nonlinear model. Experiments are also performed to verify the theoretical development.

자기베어링지지 연삭기 추축계의 고속 회전시 런아웃 적응제어 (Adaptive Runout Control of Magnetically Suspended High Speed Grinder Spindle)

  • 노승국;경진호;박종권;최언돈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.52-55
    • /
    • 1997
  • In this paper, the case study of reducing rotational errors is done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. For the most case, the electrical runout of sensor target is big even in well-finished surface; this runout can cause a rotation error amplified by feedback control system. The adaptive feedforward method based on LMS algorithm is discussed to compensate this kind of runout effects, and investigated its effectiveness by numerical simulation and experimental analysis. The rotor orbit size in both bearings is reduced about to 5 pin due to lX rejection by feedforward control up to 50, 000 rpm.

  • PDF

자기베어링으로 지지된 연삭 스핀들의 런아웃 제어 -LMS Feedforward 제어를 이용한 실험적 해석- (Runout Control of Mgenetically Suspended Grinding Spindle - Experimental Analysis of Adaptive LMS Feedforward Control Method -)

  • 노승국;경진호;박종권;최언돈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.997-1001
    • /
    • 2000
  • In this paper, the case studies of reducing rotational errors is theoretically done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. For the most case, the electrical runout of sensor target is big even in well finished surface, this runout can cause a rotation error amplified by feedback control system. The adaptiveed forward method based on LMS algorithm is discussed to compensate this kind of runout effects, and investigated its effectiveness by numerical simulation and experimental analysis. The electrical runout form the rear sensor target of grind spindle is about 70$\mu\textrm{m}$ with harmonic frequencies. The rotor orbit size in rear bearing is reduced about to 5$\mu\textrm{m}$ due to 1X and 2X rejection by feedforward control.

  • PDF

변형된 PDC 방식을 이용한 능동형 자기 베어링 시스템의 퍼지제어 (Fuzzy Control of Active Magnetic Bearing System Using a Modified PDC Algorithm)

  • 이상민
    • 한국지능시스템학회논문지
    • /
    • 제9권6호
    • /
    • pp.598-604
    • /
    • 1999
  • 본 논문에서는 능동형자기베어링(Active Magnetic Bearing AMB)시스템의 제어를 위한 새로운 퍼지제어 알고리즘을 제안한다. 이 방법은 AMB 시스템의 비선형 특성을 효과적으로 다루기 위하여 Joh등[4,5]이 제안한 LMI에 근거한 PDC 알고리즘과 퍼지 싱글톤을 사용하는 Mamdani형의 퍼지제어기를 복합한다. 이들은 각각 fine mode control과 coarse mode control이라고 구분하였다. coarse mode control은 회전축의 위치에러가 큰 경우 빠른 중심복귀 응답특성을 보이며 fine mode control은 회전축의 위치에러가 작을 때 요구되는 과도응답특성을 제공한다. 본 논에서 제안된 방법은 그성능을 입증하기 위하여 AMB 시스템의 제어에 적용되었으며 선형제어기와 일반적인 PDC 알고리즘으로 제어된 결과와의 비교를 통해 제안된 방법의 우수성을 보인다.

  • PDF

2차원 Slab 모델을 이용한 초전도체 부상력 특성의 시뮬레이션 (The Simulation of the Characteristics of the Levitation Force in Superconductor Using 2D Slab Model)

  • 유제환;임윤철
    • Tribology and Lubricants
    • /
    • 제14권4호
    • /
    • pp.44-50
    • /
    • 1998
  • This paper describes the simulation of the levitation force between permanent magnet and high Tc(critical temperature) superconductor(HTSC). Levitation force is evaluated numerically on the basis of the magnetic vector potential method and the critical state model. The superconductor is approximated to 2-D slab model. By performing computations, the following characteristics have been investigated: the process of the generation of hysteresis, the various hysteretic behaviors. The characteristics of hysteresis are important for the application to magnetic bearing, for the damping and the nonlinear stiffness is related to hysteresis.

자기베어링-로터시스템의 LMI 접근법에 의한 $H_{\infty}$ 제어기 설계 ($H_{\infty}$ Control of Magnetic Bearing-Rotor System : LMI- based approaches)

  • 박충남;송오섭;강호식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.948-953
    • /
    • 2001
  • Nonlinear dynamic equation of a 4-axis rigid rotor supported by two an-isotropic magnetic bearings is derived via Hamilton's principle. It is transformed to a state-space form for the standard Η$_{\infty}$ control problem. we present a robust Η$_{\infty}$ control design methods of continuous and discrete LMI-based approaches and improve performance using loopshaping.

  • PDF