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Abstract

A new fuzzy control algorithm for the control of active magnetic bearing (AMB) systems is proposed in
this paper. It combines PDC design of Joh et al. [8], [9] and Mamdani-type control rules using fuzzy
singletons to handle the nonlinear characteristics of AMB systems efficiently. They are named fine mode
control and rough mode control, respectively. The rough mode control yields the fastest response for large
deviation of the rotor and the fine mode control gives desired transient response for small deviation of the
rotor. The proposed algorithm is applied a AMB system to verify the performance of the method. The
comparison of the proposed method to a linear controller using a linearized model about the equilibrium
point and PDC algorithm in [7] show the superiority of the proposed algorithm.
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1 Introduction

Bearing is an important mechanical element
which supports rotating element of any machine.
An ideal bearing should have some properties like
low loss of mechanical energy due to friction, long
life, high ratio of load to unit area, and excellent
high speed performance. Especially, excellent high
speed performance is very important since every
rotary machinery is going toward high speed re-
cently. Therefore, active magnetic bearing (AMB)
has become an important issue in the field of ro-
tary machinery since it has most of properties for
ideal bearing due to its noncontacting structure. It
is, however, very difficult to get good control per-
formance for large air gap because of its high non-
linearity. It is well-known that performance of any
linear controller obtained from a linearized model
about the nominal equilibrium point becomes worse
dramatically when the shaft deviates far from the
nominal equilibrium point {1]. Hung proposed that
fuzzy control, which is nonlinear control inherently,
can be used to improve the sensitivity due to mod-
eling error and control performances [2]. It is, how-
ever, too simnple to be used for control of practi-
cal systems and does not have systematic design
methodology.

In general, there are two types of fuzzy con-
trol which are so-called Mamdani type and Takagi-
Sugeno(T-S) type. Mamdani type fuzzy controllers
are usually designed empirically but T-S type fuzzy
controllers are designed from several local linear
models of nonlinear dynamic equation [3] [4]. Wang
et al. [5) proposed the so-called PDC(Parallel Dis-
tributed Compensator)algorithm as a framework
for design of T-S fuzzy controller which uses T-S
fuzzy model. Tanaka and Sugeno [6] showed that
the stability of the T-S fuzzy model can be checked
by finding common symmetric positive definite ma-

trix P satisfying n simultaneous Lyapunov inequal-
ities. It needs, however, predetermined feedback
gains to apply the stability criterion to any practical
control problem [5] [7] and it becomes trial and error
approach. Joh et al. proposed a systematic design
method to overcome such drawback [8] [9]. It ap-
plies the Schur complements [10, page 7] to the pre-
vious stability criterion to treat the feedback gains
as unknown and derives LMIs(Linear Matrix In-
equalities) for desired regions for closed-loop poles
to obtain the desired control performances [11] [12].

Nonlinearity of AMB system is very particular
so Joh et al’s systematic design method should be
modified to handle the nonlinearity of the AMB
system. It is named modified PDC algorithm in
this paper and applied to the AMB system to get
the improved control performances.

2 Modeling and Characteris-
tics of AMB

2.1 AMB System

The AMB system which is used this paper for
simulation is in Figure 1. It has two electro-
magnetic poles which is symmetric about y axis.
It is assumed that the rotor is a rigid body with
mass m and it moves along the x axis and does
not, rotate. The same numbers of coil is winded on
the two electro-magnetic poles and the areas of the
them are the same. The air gap between the poles
and the rotor is composed of left air gap and right
air gap and the summation of them is G and con-
stant. The displacement of the rotor z is zero when
the rotor is placed at the center and the left and
right air gap is FG/2 at that instance respectively.
The current in the coil is composed of i and 4, and
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Figure 1: Simplified model of AMB

Magnetic torce (ib's)
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Figure 2: Characteristics of the Electromagnetic
Force

they are bias current and perturbation current, re-
spectively. Parameters for the AMB system which
is used for simulation is in the Table 1 [7].

2.2 Modeling and Characteristics of
AMB

The behavior of the rotor is affected by mag-
netic force between the rotor and two poles which
is governed mainly by i, and air gap. The Newton’s
second law for the rotor in this case is

> F, =mi (1)

where ) F, is the resultant force generated by the
two electro-magnetic poles. Each poles generates
dragging force which is proportional to the square
of i, and inversely proportional to the displacement
z. It is approximated [2] [13] as

(ib - ":p)2

(G + Bz)*

— (ib+ip)2 N
2T =GBy

Figure 2 represents the characteristics of the
dragging force with respect to the current and the
air gap and it shows its high nonlinearity appar-
ently. It is investigated more thoroughly in the sec-
tion 3 to compensate the nonlinearity.

(2)

3 Modified PDC Algorithm
for AMB

3.1 T-S Fuzzy Model of AMB

T-S fuzzy model [3] for dynamic systems is a
nonlinear input/output relation which is composed
of several locally linearlized submodels. The it! rule
for continuous system can be represented as

IF 2, is M} and --- and =, is M}

. 3)
THEN z = A;x + B;u,

t=1,---,r

where =z, : j™* state (or linguistic) variable,

M; : fuzzy term set of x;,

M J’ ¢ a fuzzy term of M; selected for plant rule <,
z=[x zn]'l € nR",

u=[u um]l € R,

Al e Rnxn’

Bi € prxm,

T-S fuzzy model for AMB can be obtained by
expanding the combined equation of (1) and (2) to
Taylor’s series. It is a state-space equation which
has the displacement of the rotor x, and its velocity
x9 as states [7].

z=Az+Bu+d

4
y=Car (4)
where
[ 0 1
A = OF, * gk ] ’
L 11178_::("” ’zp) 0
0
B = . Y ,
o (3 15)
0
d o= | [ Bl - [ e
L m _T%(x*’z;)] Z;
c = [1 0].

The several local linearized model can be obtained
from (4) for desired operating points (z*,4;). They
form the r consequent parts in (3).

Seven nominal displacements for the total air
gap are selected to compensate the high nonlin-
earity of the magnetic force as shown in Figure
2 in this paper (See Figure 3). Relationships be-
tween the magnetic force and current at two groups
of nominal displacements, i.e., (x = 0,0.001) and
(z = 0.002,0.004,0.006,0.008,0.01), are very dif-
ferent. The first group shows somewhat linear re-
lation but the other group reveals highly nonlinear
relation with an inflection point. Therefore, we dis-
tinguished them as two different regions, i.e., the
first and the second regions are named fine region
and rough region, respectively.
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Table 1: Model Parameters

Symbcl Parameter Value Unit
k force constant 0.00186 Ib - in?Jamp?
Jé; sensitivity of air gap to shaft disp. (8g/0x) 0.974
b bias current 0.3 amp
G nominal air gap 0.02 in
m mass of the rotor 0.0126 Ib- sec?/in
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Figure 3: 2 dimensional view of the characteristic
of magnetic force

The fine region is the region for fine mode con-
trol. & = 0 and z = 0.001 are named linguisti-
cally as ZE and PO, respectively and two linguis-
tic terms ZFE and NE are assigned to current. So,
there are four operating points, i.e., (z;,u;), in the
fine region. The T-S fuzzy model for the fine region
in if-then rules is represented as

Plant Rule 1:
IF zy = ZF and i, = ZE, THEN
:‘v~[ 0 1-x+r . -11
6470.1 0 ] 442.9 ]
Plant Rule 2 :
IF 2, = PO, and i, = ZE, THEN
T = [ 0 L] z + _ 0 - 7

6562.8 0 I 446.0 ]

Plant Rule 3 :

I¥ z; = ZF and i, = NE, THEN
o0 1] [ o 1.
z+ U

93458 0 442.9 ]
Plant Rule 4 :
IF zy = POy and i, = NE, TH?}N

L= [ ¢ ! T+ 0 %+ 0
7 82001 0 ] 417.1 | -46

@ =

Current : ip (amp)

Figure 4: Membership function

and it yields

Yoio wi [Aiz + Biii + dy]
Z:‘-—:lwi

& =

(5)

where

w; = [[(Mis(2) - M (@) (6)

The rough region is the region for rough mode
control. The purpose of the rough mode control is
t0 move the rotor to the fine region as fast as possi-
ble. There are five nominal displacements as shown
in Figure 3. The maximum possible magnetic forces
for each nominal displacements are their inflection
points. Therefore, the control outputs for these five
nominal displacements in the rough region are as-
signed as fuzzy singletons (STy,---,S8Ts). Fuuy
membership functions used in this paper are repre-
sented in 4.

3.2 Modified PDC Algorithm

The modified PDC algorithm for the control of
AMB systems is explained in this section. It uses
Joh et al’s (8], [9] pole-placement design method for
guaranteed stability and performance in the fine re-
gion and Mamdani-type fuzzy control using fuzzy
singletons for the fastest response in the rough re-
gion.

The it" fuzzy control rule according to the PDC
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Figure 5: Desired Pole Placement Constraint Re-
gion

algorithm in the fine region can be represented as

IF z, is M} and 4, is M{
1 p 2

(7)
THEN u = — Kz,

t=1,---,1r

We use, however, @ as in (8) instead of u to cancel
out the constant term d in (4).

u=—-Kix — ko (8)

where k, = B~1d. Therefore, the control for the
fine region can be represented as follows as a result
of the inference of (7) and (8).

Timwil
E::] w;

The desired region of the closed-loop poles for
each local T-S model and control pair is represented
as the shaded region in the Figure 5. It corresponds
to the damping ratio and settling time in (10).

(9)

U=

(>07 or %05 <46 %

10
and T, < 0.04 (sec) (10)

The shaded region can be represented as LMIs
from [11] [12] using the following two convex regions

in (11) and (12).
) (11)

) o

where (11) is a conic sector center at the origin
and with inner angle 8 and (12) is a vertical strip

sing(z +Z) -—cosg(z——f)
sing(z+7)

fo(z) = (

cos g(z —Z)

| 2= (2+72) 0
fn(z) = ( 0 (z+ %) — 2hy

Iy < @ < hy. Matrices L and M which are used for
the Joh et al’s [8], [9] method are determined as

200 0 0O 1 0 0

L=| 00 0/|,M=]|0 0714 -0.700
000 0 0700  0.714
' (13)

Feedback gain K can be determined using Joh
et al’s [8], [9] method which is summarized as the
following LMIs

QAT + A4,Q+ VB + BV, <0, i=1,---,r
QAT + AiQ + QAT + A;Q + VB! + BV,
+V"B] + B;Vi <0, i<j<r
A @ + it AiQ + i BiVi + QAT
+u V"B Ti<pa<m <0, i=1,---,r
Q > al, « = positive constant
(14)
where Q = P! and V = KQ.
The common symmetric positive definite matrix
P and feedback gain K can be obtained as (15) and
(16) by solving (14).

p- 3473.8 29.2 (15)

29.2 0.3
Ky=| -8083 -70|,K,=| —803.7 -7.0
Ky=| -814.7 -7.0 |,Ks=| —853.2 -74
(16)

It can be easily seen that the P is symmetric and
has eigenvalues as 3474.1 and 0.008. It means the
feedback gains K for the fine mode control is stable
since satisfies the Wang et al.’s [5] stability criterion

(Ai + BiK)"P + P(A; + BiK,;) <0, i=1,---,7
GLP+ PGy <0, i<j<r

(17)
where
Gij _ (Ai + B,‘Kj) -;— (Aj + BjKi), i<i<r
(18)

The fuzzy control rules for the rough region are
represented as Mamdani-type using fuzzy single-
tons. Each fuzzy singletons in Figure 4 are equal
to the maximum magnetic forces as shown in Fig-
ure 3. The fuzzy control rules for the rough region
yields the result of interpolation of each rules and

expressed as
9 *
2 i Wi Ci

The overall control rules for the control of AMB

systems according to the proposed modified PDC
algorithm are as follows.

i= (19)
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¢ Fine Region
Control Rule 1 :
IF &y — ZF and i, — ZIX, THEN
= —-8083 2 — 7.0 z
Control Rule 2 :
IF 2y = PO, and i, = ZE, THEN
4 = —803.7 z; — 7.0 z,
Control Rule 3 :
IF 2y = ZFE and i, = NFE, THEN
u = —814.7 2, — 7.0 v
Control Rule 4 :
I 2, = POy and i, = NE, THEN
o= —853.2 2y — 7.4 2, +0.01

¢ Rough Region

Control Rule 5 :

IF zy = PO,, THEN
Control Rule 6 :

IF zy = PO3, THEN @ = —0.7988
Control Rule 7 :

IF ; = PO4, THEN 4 = —0.5566
Control Rule 8 :

~1.5556

IS
il

IF 21 = POy, THEN @ = —0.4444
Control Rule 9 :
IF 2y = POg, THEN 4= -0.4

4 Simulation Results

Simulation results in Figure 6 show the perfor-
mance of the proposed method for the AMB sys-
tem. It represents that the AMB system is con-
trolled well for the entire range of air gap for var-
ious initial displacements. The effect of the rough
mode and fine mode control scheme can be seen
clearly. The desired performance specifications for
the AMB system are well satisfied.

Figure 7 shows the comparison of the proposed
method to a linear controller using a linearized
model about the equilibrium point and PDC algo-
rithm in [7]. The linear controller and PDC con-
troller are designed using pole assignment method
whose desired poles in the shaded region in the Fig-
ure 5. We can see the superiority of the proposed
method against the other control methods. It is the
reason for this result that the later two methods can
not handle the highly nonlinearity of magnetic force
efficiently.

5 Concluding Remarks

We proposed the so-called modified PDC al-
gorithm which shows superior performance for the
control of AMB gystems. It combines PDC design
of Joh et al. [§], [9] and Mamdani-type control
rules using fuszy singletons to handle the nonlinear
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Figure 6: Response of Fuzzy Control with Several
Initial Conditions

characteristics of AMB systems efficiently. They
are named fine mode control and rough mode con-
trol, respectively. The rough mode control yields
the fastest response for large deviation of the ro-
tor and the fine mode control gives desired tran-
sient response for small deviation of the rotor. The
simulation results show that the proposed method
has superior performance against the other control
method for AMB systems in the literature. Fur-
thermore, it can be readily implemented to the real
AMB systems since the required computation is
very small.

The authors believe that the proposed method
may be applied well to other nonlinear systems.
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