• Title/Summary/Keyword: Nonlinear functional differential equation

Search Result 44, Processing Time 0.023 seconds

CONTROL PROBLEMS FOR NONLINEAR RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Jeong, Jin-Mun;Kim, Han-Geul
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.445-453
    • /
    • 2007
  • This paper deals with the approximate controllability for the nonlinear functional differential equations with time delay and studies a variation of constant formula for solutions of the given equations.

An Existence Result for Neumann Type Boundary Value Problems for Second Order Nonlinear Functional Differential Equation

  • Liu, Yuji
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.637-650
    • /
    • 2008
  • New sufficient conditions for the existence of at least one solution of Neumann type boundary value problems for second order nonlinear differential equations $$\array{\{{p(t)\phi(x'(t)))'=f(t,x(t),\;x(\tau_1(t)),\;{\cdots},\;x(\tau_m(t))),\;t\in[0,T],\\x'(0)=0,\;x'(T)=0,}\,}$$, are established.

STABILITIES FOR NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Choi, Sung Kyu;Koo, Nam Jip;Song, Sse Mok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.9 no.1
    • /
    • pp.165-174
    • /
    • 1996
  • Using the comparison principle and inequalities we obtain some results on boundedness and stabilities of solutions of the nonlinear functional differential equation $y^{\prime}=f(t,y)+g(t,y,Ty)$.

  • PDF

ON A FUNCTIONAL EQUATION FOR QUADRATIC INVARIANT CURVES

  • Zhang, Weinian
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.6
    • /
    • pp.1179-1190
    • /
    • 2001
  • Quadratic invariant curve is one of the simplest nonlinear invariant curves and was considered by C. T. Ng and the author in order to study the one-dimensional nonlinear dynamics displayed by a second order delay differential equation with piecewise constant argument. In this paper a functional equation derived from the problem of invariant curves is discussed. Using a different method from what C. T. Ng and the author once used, we define solutions piecewisely and give results in the remaining difficult case left in C. T. Ng and the authors work. A problem of analytic extension given in their work is also answered negatively.

  • PDF

INSTABILITY OF SOLUTIONS FOR NONLINEAR DIFFERENTIAL EQUATIONS OF EIGHTH ORDER WITH MULTIPLE DEVIATING ARGUMENTS

  • Tunc, Cemil
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.741-748
    • /
    • 2012
  • In this work, we prove the instability of solutions for a class of nonlinear functional differential equations of the eighth order with n-deviating arguments. We employ the functional Lyapunov approach and the Krasovskii criteria to prove the main results. The obtained results extend some existing results in the literature.

EXISTENCE FOR A NONLINEAR IMPULSIVE FUNCTIONAL INTEGRODIFFERENTIAL EQUATION WITH NONLOCAL CONDITIONS IN BANACH SPACES

  • Yan, Zuomao
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.681-696
    • /
    • 2011
  • In this paper, we consider the existence of mild solutions for a certain class of nonlinear impulsive functional evolution integrodifferential equation with nonlocal conditions in Banach spaces. A sufficient condition is established by using Schaefer's fixed point theorem combined with an evolution system. An example is also given to illustrate our result.

TRAVELLING WAVE SOLUTIONS FOR SOME NONLINEAR EVOLUTION EQUATIONS

  • Kim, Hyunsoo;Choi, Jin Hyuk
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.11-27
    • /
    • 2015
  • Nonlinear partial differential equations are more suitable to model many physical phenomena in science and engineering. In this paper, we consider three nonlinear partial differential equations such as Novikov equation, an equation for surface water waves and the Geng-Xue coupled equation which serves as a model for the unidirectional propagation of the shallow water waves over a at bottom. The main objective in this paper is to apply the generalized Riccati equation mapping method for obtaining more exact traveling wave solutions of Novikov equation, an equation for surface water waves and the Geng-Xue coupled equation. More precisely, the obtained solutions are expressed in terms of the hyperbolic, the trigonometric and the rational functional form. Solutions obtained are potentially significant for the explanation of better insight of physical aspects of the considered nonlinear physical models.

EXISTENCE OF SOLUTION OF NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS IN GENERAL BANACH SPACES

  • Jeong, Jin-Gyo;Shin, Ki-Yeon
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.1003-1013
    • /
    • 1996
  • The existence of a bounded generalized solution on the real line for a nonlinear functional evolution problem of the type $$ (FDE) x'(t) + A(t,x_t)x(t) \ni 0, t \in R $$ in a general Banach spaces is considered. It is shown that (FDE) has a bounded generalized solution on the whole real line with well-known Crandall and Pazy's result and recent results of the functional differential equations involving the operator A(t).

  • PDF