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ON A FUNCTIONAL EQUATION FOR
QUADRATIC INVARIANT CURVES

WEINIAN ZHANG

ABSTRACT. Quadratic invariant curve is one of the simplest non-
linear invariant curves and was considered by C. T. Ng and the
author in order to study the one-dimensional nonlinear dynamics
displayed by a second order delay differential equation with piece-
wise constant argument. In this paper a functional equation derived
from the problem of invariant curves is discussed. Using a different
method from what C. T. Ng and the author once used, we define
solutions piecewisely and give results in the remaining difficult case
left in C. T. Ng and the author’s work. A problem of analytic
extension given in their work is also answered negatively.

1. Introduction

There have been found many results (e.g. [1, 2, 3, 4, 12]) on existence,
periodicity and oscillation of solutions of the equation

k

(EPCAy) %m(t} +g@([f]) =0, teR,z€R,

with a piecewise constant argument, where [t] denotes the greatest inte-
ger less than or equal to ¢ and g : R — R continuously or at least piece-
wise continuously, (EPCAy) is a special functional differential equation
with variable delay and sometimes is called EPCA for short. With orbits
in an infinite-dimensional phase space (EPCA}) may display a compli-
cated dynamics. Even some differential equations with constant delays
possess chaotic behaviors [9, 11]. Observe that for g(z) = 2% + (1 — p)z
with u > 3.75 equation (EPCA;) is Li-Yorke chaotic. In fact, a logis-
tic mapping Tny1 = prn(l — z,) is deduced by letting z, = x(n) =
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z([t]), t € [n,n + 1), and by integrating (EPCA;) on [n,n + 1). When
p > 3.75 the Li-Yorke chaos arises from Feigenbaum cascade, as in-
dicated in Chapter 9 of [10]. Being a striking contrast, a modified
(EPCA»), i.e

2
(1.1) th (t)+g(z(t)) =0, teR,z <R,

where [t] in (EPCA;) is replaced by t, is a Hamiltonian system dis-
playing simple dynamical behaviors with closed orbits and saddle loops
but certainly no chaos. This suggests researching nonlinear dynamics of
(EPCAy) for k > 2.

Asin [1, 2, 3, 4, 12], a function z(t) is called a solution of (EPCA}) on
an interval I C R if (i) #(t) is C*~! (i.e., the (k — 1)-th continuously dif-
ferentiable), (ii) (¢) is k-order differentiable on I\Z and k-th one-sided
derivatives of (t) are defined at each integer in I, and (iii) z(¢) satisfies
(EPCAy) on each interval [n,n + 1) C I for integer n. In consistence
with Walther’s idea [11] we first derive a mapping from (EPCAj), which
reflects the dynamics of (EPCA3). More generally, let

(12)  zpe=a(n) =a(ll)), 2 =@ (n) = 20(]),

fort€[n,n+1), i=1,--- ,k—1. By integrating (EPCA}) from n to ¢
we have

(1.3) 2®D(8) = —glan)(t — n) + a7V,
We also get by integrating (1.3) that
1
(14) «*2() = —§g(xn)(t —n)? 4+ 28Vt —n) + 22

By induction we have

, 1 . : .
(k—1) _ = ERPAY (k=s)(4 _ . \(i—s)
(1.5) U = i!g(a:n)(t n)* + 32:; G Iy O (t—n)
for i < k. Letting t — (n+ 1)~ in (1.5), i.e., letting ¢ tend to n + 1 from
left, we derive a mapping F, : R* — RF defined by (Y0, Y1, -+ s Yk—1) —
(yé)?yﬂ’ e 7y;g 1) where

(1.6) y{: ),g yo)+z )'yk s t=0,1,--- bk —1.

(k —
Clearly this mapping describes how the sequence { (mn,mg), > x%k_l)) :

= 0,1,2,---} evolves and how the dynamics of (EPCAy) displays.
Especially, for (EPCA;) the derived mapping (1.6) is a planar one F :
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(z,y) — (—39(z) +z+y, —g(z) +y). Define Gz : R2 — R? by (z,y) —
(y,2y —x — %(g(x) +9(y))). It is clear that F; is topologically conjugate
to Gy, because h : (z,y) — (z,—39(x) + z + y) is a homeomorphism of
R2 onto itself and Gy o h = h o F;. Hence we can equivalently discuss
(G2 in stead.

Invariant curves of G5 of the form I' : y = f(z) can be obtained by
solving the functional equation

(FE) f(f(x)) =2f(z) -z - %(g(f(ﬂf)) +g(z)), zeR

In particular, as in [7] we want to know what choice of g(x) guarantees
the mapping G2 to have a quadratic invariant curve I' where

(1.7) f(z)=az? +br+c, a#0.

In 1997 C.T.Ng and the author [7] proved that the functional equation
(FE) has continuous or piecewisely continuous or even locally analytic
function g when f is taken in the form of (1.7) for C := 1(2b—b%) + ac
in [0, +00) but has no solution for C' € (—00,—3/4). The remaining
case of C' € [~3/4,0) looked difficult and was discussed later in [8] in
a manner of series. Another problem whether the local analyticity of g
can be extended is not solved yet.

Based on [7], in this paper we discuss equation (FE) with quadratic
f in (1.7), constructing its solutions by defining piecewisely and giving
results in the remaining difficult case left in 7] by use of a different
method from [7] and [8]. We also answer negatively the problem of
analytic extension in [7].

2. Existence and construction of solutions
In this section we discuss the cases where there exists the quadratic

invariant curve, i.e., where (FE) has solutions. Our method is different
from [7] although these cases were discussed there.

THEOREM 2.1. For given constants a,b,c with a # 0,

1
(2.8) ac_>_-Z, and 1—v14+4ac<b<1++v1+ 4ac,

there is a piecewise continuous function g : R — R such that equation
(FE) has a solution of the form (1.7).
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Without proof the following lemma is basic and useful.

LEMMA 2.1. Suppose that I C [0,+00) is an interval and that f :
I — I is C! and strictly increasing. The following statements hold:

(i) If f(x) > = (resp. f(z) < z), Vx € I then for any o € I the
sequence {f"(zq)} of iterates of f is increasing (resp. decreasing).
(i) If f has a fixed point & € I and f(z) > z on the left (resp. on
the right) of &, then & attracts its a left-half neighborhood (resp.
repels its a right-half neighborhood).
(iii) If f has a fixed point Z € I and f(z) < x on the left (resp. on
the right) of &, then & repels its a left-half neighborhood (resp.
attracts its a right-half neighborhood).

Proof of Theorem 2.1. Observe that with f in the form of (1.7)
equation (FE) is equivalent to
S9U@) + 39) = —f(f(@) +2f(x) -
(2.9) = —a(f(@)? - (b-2)f(z) -z —¢,
that is,
S9U@) +a(f@) + (b~ 8)[(@) + sola) +az® + (b - 3z
(2.10) = —4zx — 2c,
and thus we obtain that
(2.11) h(f(z)) + h(z) = z,

where f is defined in (1.7) and h(z) = —3 39(x) + az® 4+ (b - 3)z +¢).
Since f(z) = a(z + )% — &

— £ where A = b? — dac, by the change of
variables y = a(z + %) in (2.11) we have

1, A 1 b 1 b
Let hy(z) = ah(2z — £) + &. It follows that
A—2b
(2.13) hi1(z®) + hy(z + ) =z,

that is,
(2.14) H(z? —r) =z — H(z),
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where H(z) = hi(z +r) and

A—2b b2 —-2b—dac
(2.15) r=—r= 1 )

Clearly the condition (2.8) is equivalent to that » < 0. For convenience
let p(x) = 2 —r. Our problem is reduced to the existence of continuous
or piecewise continuous function H such that

(2.16) H(p(z))+ H(z) ==z

for r < 0. In what follows we turn to study (2.16) for » < 0 case-by-case.

In the case (a) where r < —%, p has no fixed points and p(z) > z
on [0,+00). Taking notations a, = p"(0), n = 0,1,2,---, where p"
denotes the n-th iterate of p, by lemma 2.1 we see that 0 = oy <
o] < - < oy < Oyl < -+ — +oo and that for each n the map p :
[0y @nt1) = [Ont1, Qn+2) is an orientation-preserving homeomorphism.
With an arbitrary choice of continuous function Hy(z) on [0, —7) such
that
(2.17) lim Hy(x) = —Hp(0),

To—T

we define

(2.18) H(z) = {

HQ(CL'), TE [Oa _T) = [a07a1)$
p—l(‘r) - H(p_l(x))a T e [anvan+1)v n-= 1~27 T

H is continuous on [0,+o00). In fact, H is continuous at each points
an because limg o, ,, H(z) = limy_.q, (y — H(y)) = an — limy_.q,, H(y)
for € [om,any1) and y = p~1(2) € [wn_1,0n). To further give a
continuation in the whole real axis, define

(2.19) H(z) =z — H(p(z)), =z € (—00,0).

Obviously p(z) = 22 —r > 2% + % > 0in (—o00,0) and lim, .o H(z) =
0—limg_q H(2?—7r) = —H(—r) = Hy(0), so H(z) is defined reasonably
and continuous.

In the case (b) where r = —%, p has exactly a fixed point zy = %
and p(z) > z on [0,+00). Taking notations a9 = 0,,, = p"(0), n =
1,2,--- and By = 1,8, = p"(1), n = +1,+2,---, where p" denotes
the n-th iterate of p, by lemma 2.1 we see that lim, ., a, = xq,
limp— —0o Bn = o and limg,— 100 B — +00, and that for each n both
the map p : {anyan—{—l) - [an+1;an+2) and the map p : [,Bnnan+1) -
[Brn+1; Bn+2) are orientation-preserving homeomorphisms. For arbitrar-
ily chosen continuous functions Hi(z) on [0, —7) and Ha{(z) on [1,1 —r)
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with

(2.20) xlirr_erl(:r) = —H;(0), _lirlrl_ Hy(z) = 1— Hy(1),

we define

( Hl(x)7 S [07 —’I") = [Ol(),al),

]1)”1(:5) - H(p '(z), z¢€lan,ant1), n2>1,
=, T = xg,

(2210 HE@) =1\ Hyw), ze[L1—r) = [fo,Bu),
T — H(p(il])), UARS [/Bna/BTH-l)a n S "’1)

\ p~i(z) - Hip™' (), z€[Bn,Bns1), n>1

Using the same arguments as in the case (a) we can prove the continuity
of H separately on [0, %) and (% + o0o). Furthermore, on (—o0,0) let
H(x) = = — H(p(z)), which is determined by H on [0,+00) because
p(z) = 2% + % > 0 for z < 0, so a continuation of H in the whole real
axis is given.

In the case (c) where —% < r < 0, p has two fixed points 1 =

1;\@, Iy = 1+—V21+4’" such that 0 < z1 < % < z and p(z) > =z
on [0,z1) U (z2,+00) and p(z) < x on (x1,z2). By lemma 2.1, z;
attracts both [0,z1) and (z1,z2) under the iteration of p; =2 attracts
both (z1,z3) and (22, 40c) under the iteration of p~!. Using the same
method as above we can inductively define H(x) on separate inter-
vals [0, 21), (z1,z2) and (z2,+00) and prove its piecewise continuity on
[0,+00). Finally H can be extended on the whole real axis by defining
H(xz) = x — H(p(z)) on (—00,0), which is determined by H on [0, 4+00).

Finally in the case (d) where » = 0, p has two fixed points z; =
0,22 = 1 and p(z) > z on (1,+00) and p(z) < z on (0,1). The proof is
similar to the case (c¢). Thus the proof is complete. O

3. Analytic extension

As above, Theorem 2.1 is only related to continuity. We can also give
results with analyticity. For example, in Section 2 of [7] it is proved that
there is a unique analytic function

o0

(3.22) g(z) = —2z — 222 -8 (~1)/z”
j=1
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on (—1,1) such that (FE) has a quadratic solution f(x) = z2. Mean-
while, a question whether the function g on (—1,1) can be extended
analytically is mentioned.

Thanks to the so-called “high indices theorem” in [5], which says,
under the hypotheses that {\,} is an increasing sequence of positive
numbers satisfying Hadamard’s gap condition

liminf(Ans1/An) > 1
n—0o0

and that the series ~
g(..'lf) - Zanx)\n’
n=1

where all a,, (n = 1,2,---) are real numbers, converges for 0 < z < 1,
the series )", a, converges if £(z) tends to a finite limit as z — 1, we
know easily that

00
. BREY] 2J
Jdim 3 (-1
=

does not exist. Hence the answer to the question is negative.

4. Nonexistence of solutions

Previously our problem is reduced to the existence of continuous or
piecewise continuous solutions of equation (2.16). In this section we
continue to discuss (2.16) for r > 0. We will see that sometimes those
quadratic invariant curves like (1.7) disappear through a bifurcation of
periodic orbits.

THEOREM 4.1. Equation (FE) does not have a solution of the form
(1.7) such that a # 0 and

ac < —1 or

(4.23) ac>-1, and b<1-2y/T+ac or b>1+2/1+ac.

LEMMA 4.1. Equation (2.16) has no solution if p has a period 2 orbit.

Proof. Assume that £ # n and p(§) = n, p(n) = £ From (2.16) we
have H(n) + H(¢) = £ and H(€) + H(n) = n. The two equivalences are
contradicting. O
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Proof of Theorem 4.1. From (2.15) the condition (4.23) tells equiva-
lently that r > 3. It suffices to prove that there is no solution of (2.16)
in the case where r > %.

By solving the equation p(p(z)) = z, i.e.,

(4.24) 2?4t —r=@? -z -+ +1-71)=0,

we see the roots of the factor 22 — z — 7 are just the two fixed points of
p and the roots of the factor z2 + z + 1 — r are given by

- VBTH | -1+ V3T
2 ? 77 - 2 9

which are real when r > %. At r = 731' the two roots £ and 7 coincide

at z1, i.e., € =n = x1, and there is no period 2 point. However, when

r> % there are just two period 2 points £ and n which is bifurcated from

the lower fixed point x; and get a period 2 orbit £,n. By Lemma 4.1

the claimed result is proved. O

(4.25) £ =

5. Thecase0<r<%

Both the case 0 < r < % and the case r = ;?I to be discussed in
next section are just what we did not solve in Section 3 of (7], where
Ce [—%, 0) and orbits of p are complicated.

In the case 0 < 7 < -ii, the mapping p has an asymptotically stable
fixed point z; < 0 and an unstable fixed point z2 > 0. The asymptotic
stability is determined by the fact whether the absolute value of the
derivative of p at the fixed point is less than 1. Observing that p(0) = —r,

for simplicity, let
(5.26) s =p(—r)

and z; and zp be two zeros of p with z; <0 < z3. Obviously 2; < —r <
r] < s <0< z2 < za. By taking a continuous function Hy : (5,0] — R
arbitrarily as an initial function, we will construct the solution H of
(2.16) piecewisely.

Step 1. Construction on [—7,0]\{z1}. Note that the fixed point z;
attracts the interval [—r,0]. In this case p is decreasing and the iterative
sequence {p"(x)} for z < 0 is not monotone, but p*(z) is increasing.
Thus we consider the monotone iterative sequence of p? instead. It is
easy to see

(5.27) 0> s=p(-r)=p*(0) > >p™(0) > p"*2(0) > - =z
(5.28) p(0) < p*(0) = p(s) < --- < p¥ '(0) < p"H(0) <+ = 1.
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Moreover,
(5.29) P’ (p*"(0),p*"2(0)] — (*"(0),p*"(0)],
(5.30) P2 ™7 H(0),p7 1 (0)) — [p*FH(0), p*"3(0))
homeomorphically. On the other hand, from (2.16) we have
(5.31) H(p*(z)) + H(p(z)) = p(x).
Eliminating H(p(x)) from (2.16) and (5.31) we get
(5.32) H(p*(z)) - H(z) = p(z) - =.
Then we can define a piecewise continuous function H : [-r,0]\{z1} —
R by
(5.33)
Ho(z), z € (s,0] = (pz( p°(0)],
Hip=d O 2(@)+p7H(2)-p~2(2), z € (p*"*2(0),p "(0)] n E Z+,
(=9 by(p~(x), z € [-r.p(s)) =

H(p~*(x))+p~(z)-p~%(a), z € iPQ"“(O), 2"+ (0)) n E Z,.
Step 2. Construction at x1. Define
(5.34) H(:El) = :L‘1/2,

because 2H (z1) = H(z1) + H(z1) = x1 in (2.16).

Step 3. Construction on [z1,—r). Since p(z;) =0, p(—r)=sandp
maps [z1, —r) onto (s, 0] homeomorphically, we can define a continuous
function H on [z;, —r) by

(5.35) H(z) = « - Ho(p()).

Step 4. Construction on (0,z3). Since p is increasing for x > 0 and
as above the function H is well defined on [—7,0], as in Section 3, we
can define a piecewise continuous function H on (0,z2) by

(5.36) H(z) =z - H(p(z))

step-by-step.

Step 5. Construction on [za,+0c). Similar to Step 4 and proof in
Section 3.

Step 6. Construction on (—oc0,z;1). Obviously p(z) > 0, Vz €
(—o00,21). Then p: (—o00,21) — (0,+00) is one-to-one and monotone.
Hence we can define a piecewise continuous function H by (5.36) and
by functions of H well defined as above on (0, 4+00).

Finally a piecewise continuous solution H of the equation (2.16) on
R is well defined by all functions defined piecewisely as above. This
provides a proof for the following result.
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THEOREM 5.1. For given constants a,b,c with a # 0,
(5.37) —-1<ac<-1/4 and 1-2V1+ac<b<1+2v1+ac,

or
ac>—-1/4 and
(5.38) or 1-2V1+ac< b<1—+/1+4ac
14++v14+4ac< b< 1421+ ac,

there is a piecewise continuous function g : R — R such that equation
(FE) has a solution of the quadratic polynomial form (1.7).

Note that condition (5.37) together with (5.38) says equivalently that
0<r< %. In fact, the following inequalities

ac< —1/4, or

(5.39) ac>-1/4, andb<1l—+1+4ac or b>1+ 1+ dac,
and
(5.40) ac>—land 1-2vV1+ac<b<1l+2v1+ac,

are valid. Comparing with (2.8) and (4.23) we easily deduce our conclu-
sions.

o

6. The case r =

In this case the system of p, where

(6.41) p(z) = x? — Z,

is placed at the bifurcation point and the fixed point z; is not asymp-
totically stable. Its stability needs to be determined further. As shown
in section 4, the loss of stability causes something more difficult.

Obviously in (—o0,0) the system (6.41) has a fixed point z; = —1/2
and a zero point z; = —\/5/2. 1< —r<x <O

LEMMA 6.1. z7 is a stable fixed point of the system (6.41).

Proof. Clearly we have
(6.42) p(x) —z1 = —(z —21) + (z — 21)%, VzeR.
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Thus
pix)—z1 = —(p(z) - z1) + (p(z) — 21)?
(6.43) = (z—x1)+(z— g)(zﬂf%)?’.

When z; < z < 0 we see that p?(z) — 1 > 0 and @ — x; > 0, because
p? is strictly increasing, and that (z — %)(x + -12—)3 < 0. It follows that
p?(z)—x; < z—x1. On the other hand, when z < z1, for the same reason
p*(x)—21 <0, z—71 < Dand (z—3)(z+3)® > 0,50 21 —p*(z) < 71 —2.
Hence

(6.44) p*(@) — | <z — @], Ve & [-r,0)\{z:},

and clearly zx; is stable. .

(6.44) implies that z; attracts the interval [-r,0]. In fact, for every
z € [-r,0]\{z1} the sequence {p?*(z)} is monotone and bounded and
thus it has a limit denoted by &. The continuity implies that p*(Z) = .
However, if Z # x; substituting ¢ with Z in the inequality (6.44) we
deduce a contradiction. Therefore, as in step 1 of the last section we
can consider the monotone iterative sequence of p? similarly and prove
the follows by piecewise construction.

THEOREM 6.1. For given constants a,b,c with a # 0,
(6.45) ac> —1
and

(6.46) b=1-2vV1+ac or b=1+2V1+ac,

there is a piecewise continuous function g : R — R such that equation
(FE) has a solution of the quadratic polynomial form (1.7).

So far the remaining case, regarded as difficult in Section 3 of (7], is
discussed in Theorems 5.1 and 6.1.
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