• Title/Summary/Keyword: Nonlinear equations

Search Result 2,283, Processing Time 0.036 seconds

Tension Modeling and Looper-Tension ILQ Servo Control of Hot Strip Finishing Mills (열간 사상압연기의 장력 연산모델과 루퍼-장력 ILQ 서보 제어)

  • Hwang, I.C.;Park, C.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.72-79
    • /
    • 2008
  • This paper designs a looper-tension controller for mass-flow stabilization in hot strip finishing mills. By Newton's 2nd law and Hooke's law, nonlinear dynamic equations on the looper-tension system are firstly derived, and linearized by a linearization algorithm using a Taylor's series expansion. Moreover, a tension calculation model is obtained from the nonlinear dynamic equations which is called as a soft sensor of strip tension between two neighboring stands. Next, a looper-tension servo controller is designed by an ILQ(Inverse Linear Quadratic optimal control) algorithm, and it is combined with a minimal disturbance observer which to attenuate speed disturbances by AGC and operator interventions, etc.. Finally, it is shown from by a computer simulation that the proposed ILQ controller with a disturbance observer is very effective in stabilizing the strip mass-flow under some disturbances, moreover it has a good command following performance.

  • PDF

On a Numerical Homotopy Method for Solving Systems of Nonlinear Equations

  • Park, Chin-Hong
    • The Mathematical Education
    • /
    • v.25 no.3
    • /
    • pp.77-100
    • /
    • 1987
  • Let G : R$^n$${\times}$R\longrightarrowR$^n$ be defined by a Homotopy solving a system F($\chi$)=0 of nonlinear equations. For the vector v$\^$k/ with G'(u$\sub$k/)v$\^$k/=0, ∥v$\^$k/∥=1 where uk is one point in Zero Curve let u$\sub$0/$\^$k/=v$\^$k/+$\tau$v$\^$k/ be the first prediction for the next point u$\^$k+1/, $\tau$$\in$(0, 1). When u$\sub$0/$\^$k/ approaching too losely to some unwanted point. to follow the Zero Curve may occur the returning or cycling. One lion for it is discussed and tile parametrizied Homotopy algorithm for solving F($\chi$)=0 with it been established. Also some theorems by means of the regular value have been discussed for Zero Curves of G(u)=0 and some theorems for algorithm have been obtained.

  • PDF

Torsional Analysis of RC Beam Using Average Strains (평균변형률을 이용한 RC보의 비틀림 해석)

  • Park, Chang-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.157-165
    • /
    • 2002
  • Nonlinear analysis of the reinforced concrete beam subjected to torsion is presented. Seventeen equations involving seventeen variables are derived from the equilibrium equation, compatibility equation, and the material constitutive laws to solve the torsion problem. Newton method was used to solve the nonlinear simultaneous equations and efficient algorithms are proposed. Present model covers the behavior of reinforced concrete beam under pure torsion from service load range to ultimate stage. Tensile resistance of concrete after cracking is appropriately considered. The softened concrete truss model and the average stress-strain relations of concrete and steel are used. To verify the validity of present model, the nominal torsional moment strengths according to ACI-99 code and the ultimate torsional moment by present model are compared to experimental torsional strengths of 55 test specimens found in literature. The ultimate torsional moment strengths by the present model show good results.

On the Derivation of TSK Fuzzy Model for Nonlinear Differentical Equations (비선형 미분방정식의 TSK 퍼지 모델 유도에 관하여)

  • 이상민;조중선
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.720-725
    • /
    • 2001
  • Derivation of TSK fuzzy model from nonlinear differential equation is fundamental issue in the field of theoretical fuzzy control. The method which does not yield affine local differential equations at off-equilibrium points is proposed in this paper. A prototype TSK fuzzy model which has triangular membership functions for linguistic terms of the antecedent part is derived systematically. And then GA is used to modify the membership functions optimally. Simulation results show the validity of the proposed method.

  • PDF

A hierarchical approach to state estimation of time-varying linear systems via block pulse function (블럭펄스함수를 이용한 시스템 상태추정의 계층별접근에 관한 연구)

  • 안두수;안비오;임윤식;이재춘
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.399-406
    • /
    • 1996
  • This paper presents a method of hierarchical state estimation of the time-varying linear systems via Block-pulse function(BPF). When we estimate the state of the systems where noise is considered, it is very difficult to obtain the solutions because minimum error variance matrix having a form of matrix nonlinear differential equations is included in the filter gain calculation. Therefore, hierarchical approach is adapted to transpose matrix nonlinear differential equations to a sum of low order state space equation from and Block-pulse functions are used for solving each low order state space equation in the form of simple and recursive algebraic equation. We believe that presented methods are very attractive nd proper for state estimation of time-varying linear systems on account of its simplicity and computational convenience. (author). 13 refs., 10 figs.

  • PDF

Accurate periodic solution for non-linear vibration of dynamical equations

  • Pakar, Iman;Bayat, Mahmoud;Bayat, Mahdi
    • Earthquakes and Structures
    • /
    • v.7 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • In this paper we consider three different cases and we apply Variational Approach (VA) to solve the non-natural vibrations and oscillations. The method variational approach does not demand small perturbation and with only one iteration can lead to high accurate solution of the problem. Some patterns are presented for these three different cease to show the accuracy and effectiveness of the method. The results are compared with numerical solution using Runge-kutta's algorithm and another approximate method using energy balance method. It has been established that the variational approach can be an effective mathematical tool for solving conservative nonlinear dynamical equations.

HDQ-FD integrated methodology for nonlinear static and dynamic response of doubly curved shallow shells

  • Civalek, Omer;Ulker, Mehmet
    • Structural Engineering and Mechanics
    • /
    • v.19 no.5
    • /
    • pp.535-550
    • /
    • 2005
  • The non-linear static and dynamic response of doubly curved thin isotropic shells has been studied for the step and sinusoidal loadings. Dynamic analogues Von Karman-Donnel type shell equations are used. Clamped immovable and simply supported immovable boundary conditions are considered. The governing nonlinear partial differential equations of the shell are discretized in space and time domains using the harmonic differential quadrature (HDQ) and finite differences (FD) methods, respectively. The accuracy of the proposed HDQ-FD coupled methodology is demonstrated by the numerical examples. Numerical examples demonstrate the satisfactory accuracy, efficiency and versatility of the presented approach.

Parametrically excited viscoelastic beam-spring systems: nonlinear dynamics and stability

  • Ghayesh, Mergen H.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.705-718
    • /
    • 2011
  • The aim of the investigation described in this paper is to study the nonlinear parametric vibrations and stability of a simply-supported viscoelastic beam with an intra-span spring. Taking into account a time-dependent tension inside the beam as the main source of parametric excitations, as well as employing a two-parameter rheological model, the equations of motion are derived using Newton's second law of motion. These equations are then solved via a perturbation technique which yields approximate analytical expressions for the frequency-response curves. Regarding the main parametric resonance case, the local stability of limit cycles is analyzed. Moreover, some numerical examples are provided in the last section.

Numerical Simulations of 1983 Central East Sea Tsunami at Imwon: 2. Run-up Process at Imwon Port (임원에서의 1983년 동해 중부 지진해일 수치모의: 2. 임원항에서의 범람)

  • Lee, Ho-Jun;Kim, Kyung-Hee;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.453-461
    • /
    • 2002
  • The run-up process of the 1983 Central East Sea Tsunami along the Eastern Coast is numerically investigated in this study. A finite difference numerical model based on the nonlinear shallow-water equations is employed. The maximum run-up height at Imwon is predicted and compared to field observation. A good agreement is observed. A maximum inundation map is made based on the maximum run-up heights to accentuate hazards of tsunami flooding.

Derivation of Nonlinear Model for Irregular Waves on Miled Slpoe (비선형 불규칙 완경사 파랑 모델의 유도)

  • 이정렬
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.281-289
    • /
    • 1994
  • An equation set of nonlinear model for regular/irregular waves presented in this study can be applied to waves travelling from deep water to shallow water, which is different from the Boussinesq equations. The presented equations completely satisfy the linear dispersion relationship and when expanded, they are proven to be consistent with the Boussinesq equation of several types. In addition, the position of averaged velocity below the still water level is estimated based on the linear wave theory.

  • PDF