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On a Numerical Homotopy Method
for Solving Systems of Nonlinear Equations
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Abstract

et G: R"XR—R" be defined by a Homotopy solving a system F(z)=( of nonlinear equa-
1s. For the vector v* with G’ (u)v*=0, ||v*|| =1 where u, is one point in Zero Curve let
=vt-Lzvt be the first prediction for the next point #*+, 7&(0,1). When «* is appreaching too
sely to some unwanted point, to follow the Zero Curve may occur the returning or cycling, One
ation for it is discussed and the parametrizied Homotopy algorithm for solving F(zx) =0 with it
been established. Also some theorems by means of the regular value have been discussed for
Zero Curves of G(x) =0 and some thecrems for algorithm have been obtained.
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0. Introduction

Let’s denote
F(x)=0, F: R"——R-

a system of nonlinear equations,

{a) meaning or general idea; This idea is based on the Homotopy concept in Topclogy. T!
names in Numerical analysis are known variously as “continuous Newton method”, “continuati
method”, “Davidenko’s method” or “Imbedding method”. Here we use a Homotopy H.

Let f and g ; X— Y be continuous functions where X, Y are any spaces. We call & a Homoto
from g to f if H: XxXI—Y is a continuous map such that

H(zx,0)=g(z) and

H(z,1) =f(z) for every z&X.
We denote H : g=~f. where I=[0,1].
Let a,=H(-,¢t), ie., a.(x)=H(z, ¢, r&X,tcl, then the Homotopy H is seen to repres
a family {a,:t=I} of maps from X to Y, varying continuously with ¢ such that ay=g, a,=
This means that H gives a continucus deformation of g into f. Intuitively we can say that g
be continuously transformed into f. For example, let g(x) =z and f(z)=0 in R*. Then g is
motopic to £, i.e., define H: R*XI-—R"* by H(x,t)=(1—¢t)x, then it is clear. So our aim is
imbed F(z) into a Homotopy, where F(x) is a nonlinear system of equations. For example
we have H(x,t) =F(x)+ (¢—1) F(x,) where z, is a given point, when t=1 we have H(z, 1) =F(
Hence F(z) has been imbedded into a Homotopy and to find the solution of F(z), all we h
to do are to read the value of = when ¢=1. Here the only interesting curve is H(z,?) =0,

called Zero Curve.

(&) historical background; The first application of this tool to Numerical solution of nonli:
equations is attribute to E. Lahaye (1934, 1935) and D.F. Davidenko (1953). Lahaye’s apprc
is a locally convergent, iterative continuation method while that of Davidenko is continuation m
od by differentiation. The more references before 1970 can be found in (01) but most of t
are not discussed about Algorithm in detail to implement the continuation methed. After 1970,
notable facts that can be discussed can be found in (R1), (R2), (K1), (CMY1), (W1), (GG1
(S3) and (L1), M1), (51,2), etc,... Moreover Leder, R. Menzel and H. Schwetlick |
discussed the Algorithm and theoretical aspect in detail about both Singular and Nonsingular ¢

(c) the reason why we use it; Many iterative techniques and Newton method for the sol
of nonlinear equations have the drawback that the convergence depends on only good approx
tion. If no approximation roots are known, most of the classical methods may be of little use.
Newton method could cycle or could blow up when the Jacobian Matrix at some point is sing
The Imbedding method has the advantages of producing solutions over a large range of the
pendent variables and is used as a tool in overcoming the local convergence of iterative proce
Also the Imbedding methods may be considered as a possibility to widen the Domain of co

gence or, from another point of view, as a procedure to obtain sufficiently close starting poini

(d) how to find the sclutions of F(x)—=0 by using Homotopy; Choose a Homotopy H s
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at t=0, the solution of H(x,£)=0 is a known point z,&=R", while at £=1, the solution z* of
H(zx,t) =0 solves F(z)=0. For example,

H(z,t)=tF(z)+ (1—¢) (z—2,)
satisfies the conditions. So we start at z=z, and follow the curve of H(z,¢) =0, Zero Curve until
t=1. At last when ¢=1, we read the value of z. The most common Homotopies used are

H(z,t) =tF(z) + (1—¢) (x—z0)

H(z, £) = F(z)+ (t—1) F(xo).

The essence of the imbedding method is “path-following”. Theoretically this is very simple but
he problem is how a method is implemented by computer program efficiently, i.e., how do we
‘ollow the zero curve? Because the end point (£=1) of the zero curve is of more interest while
he curve itself is of lesser interest, we think that Lahaye’s approach is more appropriate. In gen-
ral there are many solutions of F(z)=0. The details for this can be found in H.B. Keller or
‘GG1). We note that following the zero curve in case of the turning points, we have to follow it
'ery closely.

(e) existence of solution curve with H(x,2)=0, t<[0,1]; The existence was discussed in
o1, (K1), (CYM1), and (S1). In (O1) the existence is described as follows: Let F: R*——R"
e a Cl-map on R" and assume that F’(z) is nonsingular for all z&R-. Assume that
| F’(z)~1]| <M for some M >0 for all z&R", Then for any fixed z,&R" there exists a unique
“-map 2 : [0, 1J——R" such that H(z (), t) =0 for all £&[0, 1]. Moreover z(t) =— F’ (z(t)) ' F(x,)
v all t<[0,1], x(0) =z, where H: DX[0,1]— R" is a Homotopy given by

H(z, t)=F(z)+ ¢—1)F(zo), DCR".
‘he conditions of F for existence have been replaced by the conditions of H in (S1), ie., if H
itisfies the above conditions, there exists a unique Cl-map =2: [0,1]——R* such that
[(z(),t)=0 for all t=[0,1]. In (S1) it’s called “a regular imbedding for F to z,=R"*".
he most impor tant thing in a regular imbedding is that 8, H(z,¢) is nonsingular where
H(z,ty=H(z,t)/ox, H(z,t)=F(z)+ @¢—1)F(x,). If 0,H(z,t) is singular at some points,

s called “a singular imbedding for F to z,=R" with some conditions” in (M1). In that
se the requirement to regularity of 9,H is replaced by the condition of linearly independent
:compositions from G’ («) = (8,H,6.H). The above conditions of existence in (O1) are strong. The
other representation of existence can be expressed by means of regular value. Let H : R*—»Rn
t a Cl-map and let 0 be a regular value of H. Then H-!'(0) is a C'-submanifold with
mension 1, i.e., this means the existence of zero curves. In (CMY1) this was expressed by the
neral, parametrized Sard’s thecrem. For the more details, see (CMY1).

(f) problems of imbedding methed; One of the crucial problems encountered when we use an
ibedding method (continuation method) is the selection of the stepsize. A step that is too large
1y result in the inmitial estimate being outside the convergent region of the iterative process and
sult in a failure of the process, or may pass over the critical points in the solution. In (M1) and
1), (S1) the automatic, variable stepsizes have been used. In (R1) the following problems were
inted out: efficient design of steplength selection, analysis and control of the accuracy and stabi-

7 of the computational solution, control of the computational cost (unexplored part).
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1. Assumptions and Notations.

Let’s follow R. Menzel and H. Schwetlick’s assumptions with the slight modifications.
(1) there exists a C>-map W: (—e,1+¢)——R*X R such that the following conditions are sat-

isfied:
(@ W) =(x,0)", W(l)=(z¥,1)7
£(0)>0, t(s)<1 for all se[0,1)

(b} W(s):%‘:i;/:o, GW(s)=0 for all s=[0,1]

where >0
{2y {(a) G is defined by a Homotopy H, ie., G(z,t)=H(x,t) for all (z,t)&R"XR.

(b) G’(u) satisfies the Lipschitz condition on a neighborhood U of Z, where Z,= W([0,1]),
i.e., for some L>>0

HG (@) =G’ () | <L || uy—u, || for all ), u,cU.
(¢} G’(u) has full-rank on Z,, i.e., rank G’(u)=n for all ucZ,,

Note: For (b) of (2) we can assume that G : R*X R—R* is a C*-map in a neighborhood U
Of Z;.

RYL(R G VRFI
A
H '/G'W
/I
—€ 1~¢
Fig.1
VG u =0

Notations and Meaning:

u, . tree velue of G'w =0
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u* ; approximation of u; and wt= (z* ¢.).
e,=(0,0,-,0,1) : unit vector with #-th coordinate 1.
(€ni1) TWt=1,
v* | tangent vector with G’ (u®)v*=0, || ¢*|| =1 at «*.
r* : unit vector with (#4)7 (% t—ut) =0, ¢=0,1,2, -
At : pseudoinverse of a matrix A, ie, A7(447)?
At ; transpose of a matrix A
L(R" R")={f|f: Rm——R" is a linear map}
=the linear space of real nXxm matrices.
uyt=ut-+7,v%, the first predictor with (v*)T(u—u*) =1, on v*
lt=wut+ 1, 0%, the first predictor with (r*) 7T (e f—u#) =0
Bt : a vector orthogonal to v* with Bt.»*1<0
My= (W& R™ : (e, =1}, hyperplane.
II;= {uc R+ : (v¥)"(u—u*)=7,;}, normal plane with respect to v* with distance r, from #*,

Lepr= (€any) "0t

2. Theoretical Background for Assumption.

Definition 2.1. (a) Let f: R»——R" be a C!—map, We call y&=R" a regular value if range
Df(z) =R (or rank f'(z)=n) for all z& f~'(y). Ctherwise v is called a critical valve. (b) we
call M a n-dimensional manifold if each point of M has an open neighborhood homeomorphic to R”.

Lemma 2.2. (1) Let M and N be manifolds of dimensions m, n, respectively. Let f . M— N
be a Cr-map, r>1. If y&f(M) is a regular value then f~'(y) is a Cr—submanifold of M with
dim (m—n),

(2) (Morse-Sard) Let M and N be manifolds of dimensions m,n and f.M——N be a
Cr-map. Let C be the set of critical points of f. If r>max {0,m—n)}, then f(C) has measure
zero in N (i.e., almost all y=N is regular value).

(3) (Chow-Mallet Paret-Yorke) Let UCR™ and VCR* be open sets and ¢ : UxXx V—>R" be
Cr-map, r>maz{0,m—n}. If 0&R" is a regular value of ¢ then for almost all acV, 0 is a
regular value of ¢, where p.(z)=¢(z,a).

Note: (1) See pp.22 in (H1). When M is compact mznifold f~!(y) is finite set (pcssibly empty)
see (M3). (2) See pp.69 in (H1). (3) This is the more general, parametrized Sard’s theorem.
The details are in (CMY1).

The following theorem can be proved easily by virtue of (3) of Lemma 2.2.

Theorem 2.3, (parametrized Sard’s theorem on Manifolds) Let M,S and N be manifolds with
dimensions m,p and n respectively. Let UCM and VCS be open sets.
Let ¢ UXV—N be a Cr-map, r>maz{0,m—n}. If 0EN is a regular value of ¢ then
for almost every ac=V, 0 is a regular value of ¢, where ¢ . (x)=¢(x,a).
Proof. Note that every open set of n dimensicnal manifold is a n~dimensional manifold. For
zlmost every a<V, it is enough to show that rank ¢.’ (o) =# for every z,&¢p,'(0). Suppose that
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(zo,a)=Ux V. Then there exist open sets U, V, of zo, a respectively, such that U, and V; are
homeomorphic to open sets K, L, respectively, where KCR", LCR?. Also since 0N there exists
an open subset WCN of 0 such that W is homeomorphic to R Let U, X V,=¢~*(W) N (U X V).

Then (z,,a)& U, X V, because of z,=¢, '(0). Let a=p|U,;xV,. Then a: U;xV,—Wis a
Cr-map and 0 is a regular value ‘of a. By (3) of Lemma 2.2, 0 is regular value of a..
Since z,=a."1(0) rank @) (zo)=n. Now a.(z)=¢.(z) for z&U,, and )/ (x)=¢. ().
Also .’ (zo) =¢.’ (z,). Hence rank ¢, (z,) =rank a,’(zo)=n.

For simplicity let Br={z&R": |z|<1} and we will consider the regularizing Homotopy

H(x,t)=tF(z)+ ({1—¢) (x~=x0).

Theorem 2.4. Let F: B——Bbe a C*—map and ¢ . B"X(0,1) XB——R" be a C*~map

given by

oz, t,a) =tF(z)+(1—t) (z—a).
Let Z, be the component of ¢.~'(0)NB"X (0,1) whkose closure contains (a,0) where
Pu(z,t)=p(x,t,a). Then the following facts are held:

(1) 0=R" is a regular value of ¢. (i.e., the Jacobian matriz of ¢(x, ¢t a) has full raszk on
=1 (0)).

(2) 0=R" is a regular value of ¢, for almost every a=B~.

(3) @.~1(0) is a C*-submanifold of B*x (0,1) with dimension 1 for almost all a=B-.

(4) For almost every a=B", Z, is a smooth curve in B"X (0,1) connecting between (a,0) and a
zero point of F(z)=0 at t=1. This means that Z,CB*x (0,1) is not diffeomorphic to a circle
and has no limit points on 9B*X (0,1).

(5) If F'(z) is nonsingular for every zero point x of F(z), then Z, is a smooth curve in
B"x[0,1] and has finite arc length.

(6) For summary of 9.~ (0), ¢."1(0) consists of (2) @ finite number of closed loops in B*x (0,1),
(b) a finite number of arcs in B*x (0,1) with end points in B x {1}, © Z..

Remark. (2.1) If condition of (5) is satisfied, then the curves of (a), (b), and (¢) of (6) have
finite lengths. Moreover, these curves are disjoint.

The proof of this theorem can te found in (CMY1) and (W1), but in (CMY1) and (W1) the
fixed points were discussed. In the same way this theorem can be proved for F(z)=0. '

(2.2) The more references for this theorem can be found in (K1), (GG1) and (GG2). The
main theorem of (K1) and (GGl) was almost same under Smale’s boundary condition. In (GG1)
and (GG2) the theorems for algorithm were discussed and in (K1) the main idea of algorithm is
the same as that of (M1).

(2.3) In (CMY1) they say that if we choose a point at random from V (or B"), the proba-
bility is one that each component of ¢,'(0) is a smooth curve, i.e., the existence of such curves
is guaranteed with probability one.

(2.4) If we let G=gp,, for z,<=B" then we will get Z,=2Z,, and the justification of assumptions
turns out to be clear where z,&=B*—A, A is the set of measure zero with respect to n-dimensional

Lebesgue measure.
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3. The Results obtained from Assumptions.
We can see that the following facts hold under assumptions.

Proposition 3.1, (1) There exists §o>0 such that Z (By)={ucU . |Ju—u,|| <8, ue=Z U
is compact neighborhood of Z, with Z(8,)CZ (00) CU where U is an open neighborhood of Z,,
Z,=W(0,1D).

@) |G )t || <M for some M >0 for every ucZ, where G (u)*=G" ()" (G’ (u)G’ (&)™)~

is pseudoinverse to G’ (u),

For (1) since R~ is locally compact the result follows immediately.
The following Lemma is the result obtained from the Linear algebra and also it is in (MS1).

Lemma 3.2, Given a matrix AL (R, R") with rank (A)=n,
(1) Av=0 has a solution v&R*! with ||v|| =1 and the form Av is another solution of Av=0,
AER,

@) let B=<A>EL(R"+1), weER™ with ||w| =1.

wT
If wv#0 with Av=0, ljv|| =1 then
(a) B is regular

®) B=(1- il T ]

vw | vw
and || B~ || Spiormaz (il 4%, 1),

where A*=A"(AA™) ' is pseudoinverse to A.
The following Lemma is rewritten from (MS]).

Lemma 3.3. Suppose that the assumptions are satisfied. Let Z,=w([0,1]), u.=Z, an
G’(u())vg-:o with Hvo” =1.
Defins d:Z(o)—LR*} by d@=[C )]
(]
Then there exist 0,>0, 0,<d:,7>0, ¢=(0,1) such that for every
S (uo; 01)={u: [ju—uo i <di}
_[G"(w)
W d@=[","
(2) rank G’ (W) =n(fuli rank) and there exists exactly one v&R*! with G’ (w)v=0, liv| =
and for v, (vy) v>=>c>)
3 Nv—woll <pllu—uoli.

Jz’s reguicr

Proposition 3.4. For the compact neighborhood Z(3,) of Z, there exists a full ra
neighborhood Z (0,) CZ(8c) of Z, in the sense that rank G’ (u)=n for every us=Z(3,).

This is obvious from the above Lemma, letting

VAGN) :uLi.S— (%05 01).

For (2) since G’(x) has full rank on Z(d,) the tangent direction ve&R**! is apart from si
uniquely determined by G’ (w)v=0, {lv|| =1.
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Let u,&Z, and 7.&(0,1]. Then we can consider one of the following two systems of eguations
to find the approximation #**! of %, the next point of u, with Newton method.
{G () =G ()

(v9) T (e—us) =74

{G(u) =G (up) Fig.3 ;G(z¢)=0
(o) (u—ut)=0 i=0,1,2, - /
P Un+
;uzh
B* i
i i
|
, ®
| i
\ ‘ / ‘
e I
Proposition 3.5, Up e " u

———e Tk

Let D(u)=G(u)—G(us) and

E () = (v T (u—u,) —7, for every u=S(us; 0,).
Define d, : Rrti—Re by dy(u) = /\IE)EQ) Then
G’ (u)
(w)”
® aiio= (1) 0wt 1)

vTph D yToh

(1) 4,/ (u) :[ ] is regular on S(uy; 0)

where G’ (w)* is pseudoinverse to G’ (u), G'(@)v=0 with |jv! =1,

Proof. (1) Note that rank G’(x)=n for all uc=S(z,; 8,). By Lemma 3.3, there is exactly one
v with G’ (#)v=0, [v|[=1 on S(u; §,) and for v, (v)T™w>0. It is held by Lemma 3.2. (2).
See Lemma 3. 2.

Remark.

(a) If we want to find the approximation #*** with Newton method, we can use the result of
Proposition 3. 5.
G () =G (un)
Note that d,(x) =0 <= [
h( ) (ﬂ*)’(u-uk) =7Ts.
So we can get the next:

wt=urt—dy N ut)de(ur), i=0,1,

4 (@) 71y () = (I— %%ﬂsz) 6 w* (6w ~Gwy ]
where G’ () vt=0 with || v#] =1.
(b) Let (r¥)Tv>0 with G’ (@)v=0, |[v!l =1 and
D(u) =G (u) —G(u.)
E@) =" (u—w) — A, for all =8 (u,; 6,).

D
Then we can get the same result about d,(x) = [ Eéui]
)
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(c) For simplicity of (a),
dy (u?)~di(uh) = I—-v* (@)D G W) * (G ~G@h)),
where G”(u)* is a pseudoinverse to G’(u) and v is a vector with G’ (w)v=0, ||v]||=1.
Let’s define the following things in similar way like those in (S1) and (M1) by means of
parameters in Homotopy.
Definition 3.6,
(a) H.,: R"xJ— R~ is one parameter imbedding map for F with respect to z,=R" if the fol-
lowing conditions are satisfied:
1) H., (%0, 0)=0
@) H.,(z,1)=F(z) for all z=R".
where F; R——R" is a map and J=(~¢,1+¢), >0,

Notation: If z, is fixed, let’s denote H,,=H.
(b) @ : R*"xJXR——R" is a family of imbeddings for F if g, is an imbedding for F to a, for
every a=R", ie., ¢,(a,0)=0, ¢.(z,1)=F(z) for all z&R" and note that ¢.(z, ) =¢(z,¢, a).
(¢) G, : R"XR—R" is a weakly singular, C’-imbedding for F to z,&R" if the following
conditions are satisfied:
(1) G., is defined by a Homotopy H,,. i.e.,
G, (z,t)=H,(z,¢) for every (z,t)&ER"XR
(2) there exists a Cl-map W :[0,1]— R such that W(0)=(z,,0)", W)= (z* 17,

t(s)<1 for all s=[0,1) and GW(s)=0, W(s):%?;to for every s=[0,1]. Note that the

parameter s is different from the Homotopy parameter ¢ in general.
(3) G., is a C>-map on a neighborhood U of W.
(4) G, has a full rank on W, ie., rank G,(W(s))=n for s&[0,1]. Note that G,,(z,, 0) =0,
G, (z,1)=H,(z,1)=F(z).
Notation: If z, is fixed, let G,,=G.
@) ¢: RXJXR—— R~ is a weakly singular, C*~family of imbeddings for F if
@o . R"XJ— R is a weakly singular, C’-imbedding for F with respect to a for all a=R", i.e.,
¢, satisfies the conditions (1), (2), (3) and (4) of (c). :

() ax: (—F,T)— R is a local parametrization of solutions of {G(“) =Gy ... *)

(W) (u—u) =7
if for each 7 (—7,7) there exists a unique solution
a,(t) of (*) and a, is a C'-map.
The following fact is rewritten by using the local parametrization from (M1). The proof i

easy by using Lemma 3.5 of (MI) and implicit function theorem.

Proposition 3.6. Let G: R"XR——R" be a weakly singular, C?-imbedding for F with respec
to z,=R". Then for each u* &Z(3,) there exist t>0, q>0 such that a,: (—7,7)—R" is .

local parametrization of solutions of (¥) and
| @i (®) — (ut+79*) || <g7* for all t=[—7,T].
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4, Implementable Algorithm.

The algorithm for finding a root of F(z)=0 is as follows: start with ¢=0, z,=R" and follow
the zero curve Z, of G, (x,t)=G(x,t) emanating from (z, 0). By the previous theorems Z,
reaches a zero a* of F, The algorithm discussed here is based on the algorithm of H. Schwetlick
and R. Menzel. But there will be much modifications and developments. In imbedding methods,
the algorithms can be carried out without using the global constants such as Lipschitzian and re-
gularity constants, The implementation is not as easy as it appears. Here mainly Lahaye’s approach
will be discussed for algorithm because Davidenko’s approach requires the closer approximation of
zero curve and hence the more computing time but in case of the turning points we have to follow
the zero curve very closely. Also the failure of Menzel algorithm will be discussed. When the first
predictor u,* is approached too clcsely to some unwanted point of zero curve, the failure may oc-
cure. In fact we think that our aim is x* rather than the curve itself. The concept of parametrized
Homotopy will be used for algorithm and the basic Tangent algorithm will be established. The
method using the tangent vector, tangent plane and normal plane was also discussed in H.B. Keller.
There to estimate the stepsize, he used Newton-Kantorovich thecrem.

By the previous theorem, the unique tangent vector v* is determined for #*<R"XR from
G’ (u)v*=0 with [[v*|| =1 and w*=wa*+7,v* is chosen as the approximation for the next point
w*t', If uot does not satisfy the inquality || G (u®) || <|| G @*) || +7.¢, 7. will be reduced by ac (0, 1),
ie., 7, ! =ar, If us satisfies the inquality #,* is accepted as a successor of #*= (2% ¢,) where >0

is a given number and 7,&[7,y, 7], 0<r_<7<1.

4.1. Some Theorem for Convergence.

Lemma 4.1.1. Let ECR" be an open set. Let F . ECR—R" be a C*-map with F(a) =0,
acE and C(a) be a compact set containing a with C(a)CE. Also assume that || F/(x)-'}| <M
for some M >0 on C(a). Then for any p &(0,1) there exists r=r () >0 such that

(@) Newton sequence x,.,:=z,—F'(x,) ‘F(z,) is well defined for any z, with ||z,—al| <r,

n=0,1,-

®) | Fz) | <p 1| F(z) || for all

(¢) {x.} converges to a quadratically.

Proof. Let So={zeC(a) : ||z—a|| <rs)CC(a) be the closed ball for some 7r,>0.
et]| F/ (z) || <M, and | F”(z) || <M, for some M,>0, M,>0 on S..
et

—min {0 2 2p
’“mm{ 2 MM, MIMEMZ}

S={zc€R"; ||z—a]| <7}

y=x—F'(2)"'F(z) for z&S.

Then y is well defined, Ily—aHSM%Z;IIx—aH’Sr, ie, ye§ if z&S and || Fy) || <p|| F(2)||.
‘or the more details of proof see (S1).

Note. PROCEDURE CONV-TEST-TO-X* is based on Theorem 4. 1. 2. If u*+! with £,,,=1 or one
oint of Newton iterates is contained in |} z—z* || <r, the convergence of z,—~a* is guaranteed.
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4.2. Analysis and Meaning of Algorithm.

Lemma 4.2.1. Assume that A and B are nonzero vectors. Then there exists a unique number

r such that A—rB is orthogonal to B, where rzv-lAéﬁ —,

and “.” means inner product.

Calculation of the vector B* orthogonal to vt :

k=0 : See Fig.4. Compute v* with G’ (&%) v°=0, |{v°{| =1. If (v%)7e,;,< 0 then v’:=—12°,

Let BY:=¢,;,—1v°, 7r={(e,,) ° according to Lemma 4.2.1. If (e,.,)"B°<0 then B°:=—B°,

k#0 : Assume that #*!, B*! and v*~! were obtained. Also we assume that

(Bk~1)r(ulk—x_uk—1)>0 and

- G @) | <1 G(ur) || +eTums.

Note that «,*~! can be obtained from Remark of Proposition 3.5. Compute v* with G’ («*)v*=0,
l|vt}] =1. By Lemma 4.2.1, let B*:= (a1 —ut) —rvt, r=(u,*"'—ut) ot

Using the Inverse function theorem and the fact that R* is locally compact, we can get the
following theorem,

Theorem 4.1.2. Let ECR” be an open set. Let F: ECR*—R" be a C*-map with F(z*) =0,
2*E. Assume that F’(x*) is nonsingular. Then for any pe(0,1) there exists r=r(u) >0 such
that

(a) Newton sequence Z,.,:=z,—F' (x,)"'F(z,) is well defined for any z, with||z,—x*|| <r

&) | F(z.0 || <pli Flx) || for all n.

(¢) {z.} converges to x* quadratically.

Proof. Since F’(z*) is nonsingular, according to the Inverse function theorem there exist open
sets UCE, VCR" of z* and F(x*) respectively, such that FI|U : U=V (homeo.) and F{U has a
C,-inverse function g : V——U. Since R" is locally compact, there is a compact set C(z*)C U of
¥, Also F(C(x*))CV is a compact set. Now

NWF (@) || = g’ (F(z)) || <M for some M >0, for every z&=C(z*). By Lemma 4.1.1. the
desired results are held.

If (BYTv*-1>>0 then B*:=—B

CONV-TEST-TO-X* ;

According to Theorem 4.1.2, since F’(x*) is nonsingular there exists a closed neighborhood S,
of z* such that if a certain point z, is contained in §,, the convergence of Newton sequence and
| F(xas1) || <pl) F(z,) || are guaranteed for all # and for every x=(0,1). Hence when £=1, we
test this possibility. The procedure can be described as follows: See Fig.5., where
S.={z&R": || z—z* || <r).

PRED. w::_i',l(e,-)’uo* 1ji =030 =w
CORRECT. Zj1 | =2~ F ()~ F ()

(or Runge-Kutta method of order 4)
TEST IF || Fzu) | <pl| Fz)) ||

THEN IF {| Fx;.) || <&
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THEN z*;=x;,, andZSTOP
ELSE  j:=j+1; GOTO CORRECT.
ELSE return,
where y, §&(0,1) are given numbers.
Final-Step :
See Fig.6. Recall the hyperplane [Ix= (¢ R : (e,.,)Tu=1}. We compute o, from the follow-
g equations:
()Tl —ut) =24, Li*=t*+ou0*,

— JAV I Gt 7
50 %= (ent) ™0 T (€4yr) TV

I |GUH <G || +e04, It is accepted as a approximation for w,,, and because of L =1,
may be a approximate root of F(z)=0. Otherwise we call CONV-TEST-TO-X*. If failed we
choose 7,&[7.,, 7, and go to ADJUST-STEP,

Adjust-Step :

With the chosen step size or the reduced step size 7;, uo* is computed and ¢,,, has a new value.

Take-Point :

u,* is accepted as a successor for utt!,

The cases (e,..)"v*>0 and (e,.,) T0*<0 ;
(e.4,)"0*>>0 : See Fig. 7. We attack Final-Step (see Fig. 6). If failed, we call CONV-TEST-
O-X*, Again if failed, the step size 7, will be adjusted and the approximate point u,t ;| =ut-t7,v
is computed., The outline for this is:
U S /2
compute Gy = (o) TP

Fig. 8

~
o
x

-
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If {GUM || <||G(u) || +e0; then w*+! ; =1 and return, otherwise cill CONV-TEST-TO-X*,
choose 7.&[74-1,7] and go to ADJUST-STEP.

(€n51) *v*<<0 : Choose 7,&[7;-1,7] and go to ADJUST-STEP.

The cases £i4,>1, fi=1 and £,,,<1:

tii>1: We compute ugt . =wt+rvt, 0<7<l, a&(0,1) and call CONV-TEST-TO-X* If
(v*) e, >0 then choose 7,& min{7,0;} and go to ADJUST-STEP otherwise 7, : =ar7, and go to
ADJUST-STEP. '

=11 ||GUM | S|GWh ||+t

Then go to TAKE-POINT otherwise we call CONV-TEST-TO-X* reduce ¢,(r: =ar,) and
go to ADJUST-STEP.

£41<{1 : We compute u,* ; =ut—d," (u,*) "'di(ust). If (BHT(u,*—u*)>0 and
G @) | <||G*) || +ezs then go to TAKE-POINT otherwise 7, : =ar; and go to ADJUST-
STEP.

Note: ¢, | = (e,41) ", see Fig. 8

P.C. method and ||G@**) || <[|G W) || +e7: to get «**!; See Fig, 9.

P.C. method : 2= (0,1) is a assigned value and 7,&[r,,,7] must be chosen for the predictor of
ust. 7, is reduced in order to satisfy some conditions. J is a preassigned accuracy and it is assumed
that d,’ () is regular. To get the approximation u**! for u,,,, we have the problems for the
number of iterates and the accuracy because we don’t need the high accuracy for u*+' except for
the turning points and our aim is x* So the method [[G(xqt) || <{| G ") || +er, will ke consider-
ed, 7,<(0,1]. For the more details see (M1). The algorithm for P.C. can be described as follows:

PRED. ut | =uttr0t
=0
Uit L =ut—dy (u?)7'dy (u)
CORRECT. WHILE (B*)™(#;*—u*)>0 AND

G ) | <pll Gad |
DO IF (|| G (:s®) || <O
THEN return (for the next step)
ELSE i: =i-+1
.t =ut—d () d (uh)
GOTO CORRECT.
Th . =QT4
GOTO PRED.
The method || G ) || < |G (w*) || +1.¢ ; See Fig. 3
Let a=(0,1) be given, 0<{7,<7<1 and 7,&[1:-,,7]. In (M1) for »* the generalized incremer
function was used. u.* is accepted as an appropriate successor of #* if ||G (u®)|| <||G (")) +e
and we try to get the next approximate point. Thus if the parameter ty=1 is reached, it is see
from (M1) that z* is an cc~approximation to a root of F(z)=0 where ¢>0 is a constant. Moreovs
we need the condition (B*)T(u*—u*)>0 where u,* is the first correction to ..
ut | =uttr,vt
WHILE || G || > |G || +7.e
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The failure of the original Menzel’s Algorithm and one solution for it : See Fig. 10.

When we keep on moving along zero curve, the failure of Menzel's algorithm could accure in
ractice if u,* is approached too closely to some unwanted point of zero curve, This failure also
vas pointed out in (AGl), Using the curvature vector and the first correction w,* for wus, this
roblem can be solved but the problem is that we need the second derivatives. So without using
he curvature vector we will consider how to get the orthogonal vector B* with respect to v*
‘rom the previous fact there is a full rank neighborhood of Z, and by Proposition 3.5, 4./ () is
egular on the full rank region, Hence we can reduce 7, until 4/ (us*) is regular. The algorithm
3 as follows : (a) with curvature vector C* :

ut | =ttt
WHILE d,/ (u,*) #regular
DO 7, =ar, ; ut . =wrt1,v*

wt L =t —dy (ue!) "' (uo?)
WHILE (CH7(uf—u*)<0 OR
G @) || > | G(a®) || +rie
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DO 7, =an,
uo‘ : =ﬂl+fkvk

u D =gt —dy () 1da (ut)
@t : _-:uol,

where C* is a curvature vector to zero curve Z, at u*. For dy (#*) see Remark of Proposition 3.5,

I,k#l

approaching too ciosely to seme unwarted point of Zo
Fig. 10

approaching too closely to some unwanted point of Z,
Fig. 10

IS

—

returning
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‘or the better approximation for #**!, the following codes can be added after WHILE-DO state-

ant.
wt D =ugt—dy (ue) "'di (uot)
i.=0
WHILE || G @) | K11 Gw?) || +7ie
DO i:=i+1
unt D =ut~d ()" d (u)
m . =t
whtl L =y}t

7) by finding a vector B* which is orthogonal to v :
se Fig, 4. Suppose a vector B* which is orthogonal to v* was found. We consider how to find

next vector B**! and to avoid approaching to some unwanted point of zero curve.
ut . =utT,0t
WHILE 4,/ (u,*) =regular
DO 7. : =at, 3 us* | =ub-b1,0*
)t L =ut—dy (u") "ty (1"
WHILE (BYT(u*—u*) <0 OR
HG @) | > |G || +ae
DO 7, : =ar,
ut | =utr0t
ut  =ut—d/ (uP)d.(u?)
Wt =gt
len we compute v**! with G’ (u*t)vtti=(, [|v**1|| =1 and B*?! with (B*1)Tphti=(,

.)'r.vb<0. If (Ble+l)'tvk>0 then BH—! : :_Bk+l.
~ 3. Parametrizied Homotopy Algorithm.

> R*XR—R" is a weakly singular, C*-imbedding for F with respect to a=R-,
OCEDURE MAIN ;

choose 7., 7& (0, 1] with 0<r_, <7

choose @, B, 1,6 (0,1) and &>0; a,=R»

o1 =03 k:=0; i:=1

e: =g ; (e-approximation is changed)

Z,. =a;; (start-value is changed)

u® ;= (x,0) ;

G : =G., ) ;
CALL BASIC TANGENT ALGORITHM
N;:=N

¥ :‘_Z}:1 (e;) Tu™ (predictor)
m =0

Ymit' | =8 —F (9, " F (.5 (corrector)

{or Runge-Kutta method of order 4)
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IF | F(yna) | <pll F(yad) ll
THEN IF || F(¥ssy) || <& THEN z* | =94, STOP
ELSE GOTO (3)
4) a; . =yn'
& . =P
i:=i+1; GOTO (1)

Remark. For corrector of (3) the Runge-Kutta method of order 4 will be favorable, The reas
is based on W. Kizner (1964). The procedure is as follows:
Yarr' D =Yl —F (3,9 7 F(ya)

Let h=—F(y.) and q(¥.")= - Then

.
F(ya')
Ymir' : =y,:+%h{1<1+21<,+ 2K+ K

Ki=q(ym)

K,=q(y.'+1/2 kK))

Ks=q(y.'+1/2 hK;)

K,=q(y.'+ hK,)
W. Kizner pointed out the following facts ; (a) the order of convergence of the method is {
(b) by the experience with the method, it does not require as good an initial approximatio:
Newton’s method. (¢) The number of correct decimal places is multiplied by five at each
because of order 5, (d) A single application of this method would be equivalent to about twr
three applications of Newton’s method in which the number of correct decimal places is app:
mately doubled at each iteration. For the more details see (K2).

The Runge-Kutta method of order 4 was also used in Li-York’s Algorithm.

PROCEDURE BASIC TANGENT ALGORITHM ;

(0) choose a&(0,1) 5 £:=0; k:=0

(1) (compute v* and B* when 2=0)
compute v* with G’ (@*)vt=0, ||v*|| =1
IF (v%)%e,;,<<0 THEN v*:=—v*
Bti=¢,,—1v*, 7=(€m4,) 0"
IF (e,41)™B*<0 THEN B*:=—-B*

(2) IF (e.+1)"v*>0 THEN GOTO (3)
(forward) ELSE GOTO (5)

(3) (final-step)

N el
* (emH) Tvk

Itr=uttovt
IF [|GUEMN | SH G || +eos
THEN #ut:=lt, GOTO (8)

g

“@) ugt: =1t
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CALL CONV-TEST-TO-X*
(5) choose 1,&[ 74—y, 7]
(6) (adjust-step)
uet: =ut 7,0
Lers = (€ns1) "0
(7) CASE;
tye >1 : CALL CONV-TEST-TO-X*
IF (o) 7€, >0
THEN ¢,&min {7, 04}
GOTO (6)
ELSE z,:=ar, ; GOTO (6)
ten=1:IF || G(u) || < || G || +es
THEN GOTO (8)
ELSE CALL CONV-TEST-TO-X*
7 =ar, ; GOTO (6)
£t <1 IF dy/ (us*) #regular THEN 7,:=argz GOTO (6)
compute #,*: =ut—d,’ (") ~'d. (ust)
IF (BYT(ut—u*)>0 AND
NG ud) | <G @) || +en
THEN GOTO (8)
ELSE 7,:=ar, ; GOTO (6)
(8) (take-point)
=gt ) gt (o) Ut
9 IF tp=1
THEN N:=k-+1; RETURN
ELSE compute w*t! with G’ (ut*!)vtt1==0, |l v*+!|] =1
IF (v%)7v*"1<) THEN piti:=—ottl
compute B! with (BH)Tyr1=(,
(BH) TphlD
(10) 2:=k+1; GOTO (2)

Note: For the more convergence discussion of this algerithm see (M1) or (MS1).

5. Increment Functions.

5.1. Euler-Cauchy Increment Function @ (u, 1).
Here for the derivation the numerical differentiation is used. Also we can use Taylor’s series.
Let a:(z) be a local parametrization of solutions of
G(x) =G ()
[(u——u‘)Tv*zr for + ef7—,7],
here 7>>0 is a number.
Let z(#*, 1) =a,(r). Then
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Glz(u*, 7)) =G (u")
G’ (z(6t, 1)),z (u*, 7)=0,
where 0,z(#*, t) means the partial derivative to the second variable. On the other hand,
(z(w*, ©)—uk)Tvt=r7,
0,z (u*, 7)"v* =1
Recall v* is a vector with G’ (u¥)vt=0, || v*| =1.
From (5.1) and (5.2) let r==0. Then we have
G’ (z (u*, 0)) 0,z (u*, 0) =0,

0,z (u*, 0) Tvt =1.
Hence 0,2 (1, 0) =vt,
Now
D,z (t, 0) =lim 2(#L D) —2(#, 0)
’ =0 T
Lzt T)—2( 0)
~ T
So let 9,z (ub, 0) = z(uh, 1) —2 (¥, 0)_
! T

Hence we have z(u* 1) :z(u‘, 0) 470,z (¢*, 0)
=ut{ 7o,
Let’s define the Euler-Cauchy increment function @(x, ) as follows :

z(ut, 0) —ut |
O (u, 1) = ( 7 >0
vt cr=0

Note : O (u, ) is called the strong consistent increment function in (M1).

5.2. Newton Increment Function @ (i, 7).

Let’s consider the following system of equations
{G (#) =G (u*)
()T (u—ut) =1,
Guw)—G ") ]

()T (u—u) —7s

Let dy(u) = [

Gl
Then by Proposition 3.5, d‘/(u):[(vk(;)] is regular on Z(J,) and by using the

Newton method,
Uiy =u—dy (u;)~'d; (), i=0,1,2, -

Now

d (w)=da () = (T- 200 6 () (G () —C(wh),

- -(‘”i) Tyt

where G’ (&) v,;=0, |lv:|}=1.
Let i=0, z(u* 7)=wu, and wo=u'+4rv*, Then
2 (1, 7) =sg—dy (o) ~'de (40) .

Define



On a Numerical Homotopy Method for Solving Systems of Nornlrear Equations 99

z(ut, 7)) —ut |
O(u,7) = e >0

ot =0

5.3. The Fourth Order Runge-Kutta Increment Function,

From the Euler-Cauchy increment function
z (4, ) =ut4-70,2 (4t 0).
Let g(u* 0) =0,z (x* 0)=v*. Then v* depends on only w*cz(d;).

Let Ki=g(u*,0) =v
K2:g<u"+—§—Kl, 0) =uh!
where G’ (uhDobi=0, |lob![] =1,

ulz,l:uk_l__;_.vb’

and let V= g(uur;g_Kz, 0) —oh?,
where G’ uh)vh2=0, |[vh?]] =1
u“:’:u"—\-%Kz
and let K,=g (47K, 0) =v53,
where G’ (ub3yhi=0, |[vb?|| =1
ubi=ut4+ 7K,
et z(ut, 7) =ut+1/6 (K, +2K,+2K;+K,).
Define
z(ut 1) —ut |
O(u,7) = T -7>0
vt tr=(
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