• Title/Summary/Keyword: Nonlinear differential equation

Search Result 447, Processing Time 0.026 seconds

Oscillation Results for Second Order Nonlinear Differential Equation with Delay and Advanced Arguments

  • Thandapani, Ethiraju;Selvarangam, Srinivasan;Vijaya, Murugesan;Rama, Renu
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.1
    • /
    • pp.137-146
    • /
    • 2016
  • In this paper we study the oscillation criteria for the second order nonlinear differential equation with delay and advanced arguments of the form $$([x(t)+a(t)x(t-{\sigma}_1)+b(t)x(t+{\sigma}_2)]^{\alpha})^{{\prime}{\prime}}+q(t)x^{\beta}(t-{\tau}_1)+q(t)x^{\gamma}(t+{\tau}_2)=0,\;t{\geq}t_0$$ where ${\sigma}_1$, ${\sigma}_2$, ${\tau}_1$ and ${\tau}_2$ are nonnegative constants and ${\alpha}$, ${\beta}$ and ${\gamma}$ are the ratios of odd positive integers. Examples are provided to illustrate the main results.

SOLVABILITY OF A THIRD ORDER NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATION

  • Liu, Zeqing;Wang, Wei;Park, Jong Seo;Kang, Shin Min
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.443-452
    • /
    • 2010
  • This work deals with the existence of uncountably many bounded positive solutions for the third order nonlinear neutral delay differential equation $$\frac{d^3}{dt^3}[x(t)+p(t)x(t-{\tau})]+f(t,x(t-{{\tau}_1}),{\ldots},x(t-{{\tau}_k}))=0,\;t{\geq}t_0$$ where ${\tau}>0$, ${\tau}_i{\in}{\mathbb{R}^+}$ for $i{\in}\{1,2,{\ldots},k\}$, $p{\in}C([t_0,+{\infty}),{\mathbb{R}^+})$ and $f{\in}C([t_0,+{\infty}){\times}{\mathbb{R}^k},{\mathbb{R}})$.

SEMI-ANALYTICAL SOLUTION TO A COUPLED LINEAR INCOMMENSURATE SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS

  • Iqbal M. Batiha;Nashat Alamarat;Shameseddin Alshorm;O. Y. Ababneh;Shaher Momani
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.449-471
    • /
    • 2023
  • In this paper, we study a linear system of homogeneous commensurate /incommensurate fractional-order differential equations by developing a new semi-analytical scheme. In particular, by decoupling the system into two fractional-order differential equations, so that the first equation of order (δ + γ), while the second equation depends on the solution for the first equation, we have solved the under consideration system, where 0 < δ, γ ≤ 1. With the help of using the Adomian decomposition method (ADM), we obtain the general solution. The efficiency of this method is verified by solving several numerical examples.

On asymptotic Stability in nonlinear differential system

  • An, Jeong-Hyang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.5
    • /
    • pp.62-66
    • /
    • 2006
  • We investigate various $\Phi(t)-stability$ of comparison differential equations and we abtain necessary and/or sufficient conditions for the uniform asymptotic and exponential asymptotic stability of the nonlinear differential equation x'=f(t, x).

  • PDF

CONTROL PROBLEMS FOR NONLINEAR RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Jeong, Jin-Mun;Kim, Han-Geul
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.445-453
    • /
    • 2007
  • This paper deals with the approximate controllability for the nonlinear functional differential equations with time delay and studies a variation of constant formula for solutions of the given equations.

ON HYERS-ULAM STABILITY OF NONLINEAR DIFFERENTIAL EQUATIONS

  • Huang, Jinghao;Jung, Soon-Mo;Li, Yongjin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.685-697
    • /
    • 2015
  • We investigate the stability of nonlinear differential equations of the form $y^{(n)}(x)=F(x,y(x),y^{\prime}(x),{\cdots},y^{(n-1)}(x))$ with a Lipschitz condition by using a fixed point method. Moreover, a Hyers-Ulam constant of this differential equation is obtained.

THE COMBINED MODIFIED LAPLACE WITH ADOMIAN DECOMPOSITION METHOD FOR SOLVING THE NONLINEAR VOLTERRA-FREDHOLM INTEGRO DIFFERENTIAL EQUATIONS

  • HAMOUD, AHMED A.;GHADLE, KIRTIWANT P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.1
    • /
    • pp.17-28
    • /
    • 2017
  • A combined form of the modified Laplace Adomian decomposition method (LADM) is developed for the analytic treatment of the nonlinear Volterra-Fredholm integro differential equations. This method is effectively used to handle nonlinear integro differential equations of the first and the second kind. Finally, some examples will be examined to support the proposed analysis.

SIMPLIFYING AND FINDING ORDINARY DIFFERENTIAL EQUATIONS IN TERMS OF THE STIRLING NUMBERS

  • Qi, Feng;Wang, Jing-Lin;Guo, Bai-Ni
    • Korean Journal of Mathematics
    • /
    • v.26 no.4
    • /
    • pp.675-681
    • /
    • 2018
  • In the paper, by virtue of techniques in combinatorial analysis, the authors simplify three families of nonlinear ordinary differential equations in terms of the Stirling numbers of the first kind and establish a new family of nonlinear ordinary differential equations in terms of the Stirling numbers of the second kind.