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Abstract We investigate various & ( #) —stability of comparison differential equations and we
abtain necessary and/or sufficient conditions for the uniforrn asymptotic and exponential asymptotic

stability of the nonlinear differential equation x” = f(¢, x).
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1. Preliminaries and Definitions

Lyapunov second methods are now well
established subjects as the most powerful
techniques of analysis for the stahility and
qualitative properties of nonlinear differential
equations z’ = f(t,z), z(t,) =z, R".

One of the original Lyapunov theorems is as
follows:

Lyapunov Theorems. For z'=f(t,z), assume
that there exists a function V:R,xS5—R,_ such
that

(i) Vis C'-function and positive definite,

(i) V is decresent,

(i) L Vitw) = V(b2)+ Y, « f(ta)

<—a(llzl)
for t=0, €S, where

S, = {zeR¥ Izl <p} for p>0, alr)
is strictly increasing function with «(0) =0.

Then the trivial solution z(t) =0 is uniformly
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asymptotically stable.

The advantage of the method is that is that
it does not require the knowledge of solutions
to analyse the stability of the equations.
However in practical sense, how to find suitable
Laypunov functions V for given equations are
the most difficult questions. Hence weakening
the conditions (i), (ii), and (iii), and enlarging
the class of Lyapunov functions are basic trends
in Lyapunov stability theory {2, 3, 4, 5, 6, 11].

In the unified comparison frameworks, Ladde
[7] analysed the stability of
differential equations by using vector Lyapunov

comparison

function methods.

Lakeshmikantham and Leela [9] initiated the
cone valued Lyapunov function methods to avoid
the quasimonotonicity assumption of comparison
equations. They obtained various useful differential
inequalities with cone-valued Lyapunov functions,
Akpan and Akinyele [1] extended and
generalized the results of [7, 8] to the ¢,-stability
of the comparison differential equations by using
the cone-valued Lyapunov functions.

Here we generalize, in some sense, the results
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of [1]1 to the ¢(t)-stabilites of comparison
equations below.

Let R" denote the n-dimensional Euclidean
space with any equivalent norm || « I, and
scalar product (, ).

R, =[0,00). C[R,xR", R"] denotes the space of

continuous functions from £, < R" into R",

Definition 1.1 ([11]). A proper subset X of
R" is called a cone if () AMKC K, A>0; (ii)
K+KC K, (i) K=K (v) K =o; ()
KN (K)={0}, where K and K" denote the
closure and interior of X, respectively and oK
denotes the boundary of & The order relation
on R" induced by the cone K is defined as
follow:

For z,y€R", =<,y iff 2—yEK, and = <,y
iff y—z€K",

Definition 1.2 ([11D). The set
K ={p€R":(,z) 20), for all z€K} is called
the adjoint cone of K if K#* itself satisfies
Definition 1.1.

Note that z€8K if and only if (¢,z)=0 for
some ¢<K* where K,=K—{0}.

Consider the differential equation

‘T’ :f(tyl)i m(t()) = g tO =0 (1)

where f&C[R,xR".R"| and f(t,0)=0 for all
t=0. Let S, ={z€R" lzl<p}, p>0. Let
KCR" be a cone in R", n<N For
VEC[R, xS,K  at  (ta)ER. XS, et

D*Vitw) = lim - [Vit+ haa+f (12) = Vb)) be
h—0*

a Dini derivative of V along the solution curves

of the equations (1).

Consider a comparison differential equation

u' =g(tu), ulty) =ug t; =0 2)

where g€ C[R, x K R"], ¢(t,0)=0 for all ¢t =0

and K is a cone in R".
Let S(p)={ucsK: lul < p}, p>0. for

UEC’[R_,_XS(p),[q, at

D¥y(tu) = liml[v(t+h,u+h9(t,u))—v(t,u)} be a
0" h

Dini derivative of v along solution curves of the

equation (2).

(tuw)ER, xS(p), let

Definition 1.3 ([11]). A function g:D-R",
DcR" is said to be quasimonotone
nondecreasing relative to the cone K when it
satisfies that if =z,yED with z<zy and
(ppy—z)=0 for e E Ky, then
(p9(y) —g(z)) = 0.

some

Definition 14 ([810]). The trivial solution
z=0 of (1) is (S1) equistable if for each e>0,
t,ER,, there exists a positive function &= d(t,e)

such that the inequality |lz,l<dé implies
|z (t,tyze) I <e, for all t = t,.
Other stability notions (S2~Sg) can be

similarly defined [810].
Now we give cone-valued ¢(t)-stability
definitions of the trival solution of (2).

Let ¢:[0,00]—&* be a cone-valued function.

Definition 1.5 ([12]). The trivial solution

u=0 of (2) is

(S1") ¢(t)-equistable if for each >0, t,ER,,
there exists a positive function &= 6(¢,,e)
such that the inequality (b(t),u;) <6
implies (¢(¢),r(t)) <e, for all t>t, where
r7(t) is a maximal solution of (2);

(S2") uniformly #(t)-stable if the & in (S) is
independent of t,;

Other ¢(t)-stability notions (S3~Sg") can be
similarly defined [12].

Definition 16 The trivial solution ©u=0 of
(2) is

(B:) ¢(t)-equibounded if for each a >0,

t, &R, there exist B=p(t,a) such that

the inequality (¢{tg)uy) <a  implies

(¢(t),r(t)) < B for all t=>t, where r(t)
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1s maximal solution of (2);
(Bz) ¢(t)-uniform bounded if the 8 in (Bi") is
independent of to ;
The definition (Bs'~Bg) may be formulated
similarly.

Lemma 1.7 ({1D. Let Il « I p:&Z>K be a
generalized norm and let g¢< C[R+><K,R"],
lg(tiu) —g(tu,) |l ,, LeC[R,R,] for
(t,u,), (uy))ER, X K.

If w, v are two solutions of (2) through
(tpug) and (t,vy), respectively, then for t= ¢,
we have

t
g — v, ||Pexp[—‘/ L(s)ds}
to

< glu—vlp

t
< g llug—v, ||Pexp/ L{s)ds
fo

2. Stability Theorems

Theorem 2.1 (12]). Assume that

(i) VEC[R. xS,K], Wtz) is Ilocally
Lipschitzian in x relative to K& and for
(tz)ER, XS, D*W(t,x) < g(t, V(t)),

(i) ¢EC[BR XKR"| and gltuw) is

quasimonotone in u relative to K for each
teR—f—!

(iii) there exist a,b€K such that for some
o(t) E Ky, for each TE Sy,
bz l) < (¢(t), Vita)) <alllzl), t=t, =0

Then the trivial solution z=0 of (1) has the
stability  (S;~Ss)
properties if the trivial solution »=0 of (2) has
each one of the o(t)-stability (S,"~Sg")
properties in Definition 1.5.

corresponding one of the

Theorem 2.2 Ilet conditions (i) and (i) of
Theorem 2.1 hold. Assume further that for ¢>0,
d>0, (p(t)u(®)) < flag 1? and
clhal® < (a(t), V(t,z)). If the trivial solution
uv=0 of (2) is exponentially asymptotically ¢(t)

—-stable, then the trivial solution z=0 of (1) is
exponentially asymptotically stable.

Proof) Let «(tt,z,) be any solution of (1)
such that Wt,zy) < gy,. Then by Theorem 3.1
in [9], we have V(t,z) < xr(t). Since the trivial
solution u=0 of (2) s
asymptotically ¢ (t)-stable, then there exist
>0, a>0 both real number such that
(p(8),r(8)) < a(¢(t).ult))exp|—alt—1ty)], t = t,
and Cllzl¢< U(¢(t),u(t))exp[~a(t—t0)]

This implies that

exponentially

lall < Mz, lexp[=B(t—1t))], t=t, %:M

b

a p—
z—ﬂ.

Theorem 2.3 Assume that

() g=C[R.xKR"], ¢(t,0)=0 and g(tu) is
quasimonotone in wu relative to & for each
t€R, and for (t,u),(tw)ER, XK and

Le C[R+,R+],
Il g(tu)—g(tw) ll p< wLE) Nu—vll P

If the trivial solution uw=0 of (2) is
generalized exponentially asymptotically ¢(t)
-stable, then there exists a cone-valued
Lyapunov function v with the following properties :

(i) vEC[R, x5 (p),K], v(t,0)=0, and wv(tu)

is locally Lipschitzian in u relative to K
for each t€R, and for a continuous
function B(¢) = 0.

(i) (6@), I () 1l p) < (p(t),0(tu))

< o{t,t) (@), I r(t) Il p)
for some ¢(t)EK¥, oEC[R,xXR,R,],
(tu) R, x 5(p).
(i) Dv(e(t),v(tw)) < o—p () (@(t),w(tu), for
(tu)ER, X S*(p), p'(t)

bounded and increasing.

exists, p(t) is

Proof) Define a cone-valued function as

o(t, )= sup soo{ | u(t+6,L0) || »
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xexp (— p(¢+8) + ()},

where u(ttyu,) are solutions of (2) passing
through (¢u,) and by (i) are continuous.
Obviously v(t,0) =0.

Now for (tu),(tu,)ER, X S*(p), we have by
Lemma 1.7 that

I o(t,uy) —oltu) ||
= Hsupdzo{ Il (t+(5,t,u1) i P

p(t+68)+p(t))}
- [|sup5>0{ (| uy (t+6,t,u,) I 5

X exp(—=p(t+8)+p)}H p
0{”“ (t+0,t,uy ) —uy (t+6,t,uy) |

pt+8)+pEN} p
< k|| sups s olexp(=pt+8)+pE N} lw —w I ,

T
X exp/ L(s)ds
tll

=) || u —

X exp(—

P
X exp(—

UQ”pa

where
B(t) = sups » olexp(—p(t+6) +p(t))}

t
X expj L(s)ds =0 .
t’(]

For =0, and by the uniqueness of solution
of (2) we have Ir(t)ll p<w{t,u) so that
(o(e), Ur(t) 1 p < (6(2)w(tu)).

Since =0 of (2) is generalized exponentially
asymptotically ¢ (t)-stable, we have,
Lemma 1.7 that
(¢(t)v(tyu) =
< sups o {ep(—p(t+8) +p(1)) (), lult+dtull »)}
< SUpP; » o fexp(—pE+6) +p())N@t), lult+atull »)}
< sups s g {op(—p(t+6) +p(t) Me+6)(glt), ll, | ,)

X explp(ty) —p(t+6))}
=B(t.t) (3(1), Nlug Il )
< Blt1,) (60, 17(0) I pexp [ Lis)ds
to

=o(t,t,)(p{8), I »(2) } ),

using

where
o(t, to) = sup 550 {M(t+ 8)exp(p(t,) —p(D)}

t
X exp f t L(s)ds.

The proof of (¢) is similar to that of {c) in
Theorem 2.7 ([13]). This completes the proof of
Theorem 2.3.

Let H={a€C|R R ]|alt) is strictly increasing
in ¢ and a{0)=0}.

Theorem 2.4 Assume that there exist
function W(t,z) and g¢(t,u) with the following
properties:

(i) g¢=C[R,xKR"], 4(t0)=0, gltu) is

quasimonotone in w relative to A
(i) VEC|R,xS,K|, KC R",

V(t,0) =0, V(ta)ER, %S,

b(lhz ) < (p(t), Vt,z)), t=>1t,20

where b€ H on the interval

0<u<o and blu)ooo as u—oo,
(iii) D*Vit,z) <, g(t, Vit,z)),

(t,x)ER+><5p.

Then, the ¢(¢)-equiboundedness of the system
(2) implies the equiboundedness of the system
(1

Proof) Let o <0 and t,© R, be given, and let
[z, [ < .

Since the equation (2) is ¢(t)-equibounded,
given «; =20 and ¢ER, there exists a
B, =B, (ty,a) that is continuous in t, for each a
such that (¢().r(ttuy)) < 4,,

t >ty provide (¢(t),ug) < a.

Moreover, as blu)—o as w—o0, we can

choose a L=L(t,a) verifying the relation
By (tga) < b(L)
Now let uy = W{igzy) in K.

Then, assumption (ili) and Lemma 1.4 show
that
Wtz (ttgze)) < rttguy), t =t
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where r(ttou,) is the maximal solution of the
system (2).

Suppose, if possible, that there is a solution
z(t,tyz,) with |2, <« having that property
that, for some t; >t,, |zt tuz,) | = L.

Then,
b(L)=b(lzll) < (¢(t), Vt,2)) <

(@), r(ttgug)) < By (g} < b(L).

The proof is complete, since this contradiction

implies that (B,) holds.

Theorem 2.5 Let the conditions of Theorem
24 hold with bo(lzl) < (¢(s),V(t,z)) being
replaced by
bzl ) < (o(8), V(t,z)) <alll zi)
where a€EH.

Then, if the system (2) is ¢(t)-uniform
bounded, the system (1) is likewise uniform
bounded.

Proof) We which is

independent of t,. Since B; =g,{a) in this case,

choose o, =alo),
it is easy to see from the choice of Z that it is
also independent of .
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