• Title/Summary/Keyword: Nonlinear controller

Search Result 2,175, Processing Time 0.025 seconds

Anti-shock Controller Design for Optical Disk Drive Systems with Nonlinear Controller (광디스크 드라이브 시스템을 위한 비선형 제어기를 이용한 Anti-Shock 제어기 설계)

  • Baek, Jong-Shik;Chung, Chung-Choo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.675-677
    • /
    • 2004
  • This paper presents a nonlinear controller design for optical disk drive systems to improve anti-shock performance. The nonlinear anti-shock controller is added parallel to the original linear servo control loop. In the previous work, dead-zone nonlinear element is used for nonlinear controller and PID control method is used for linear controller. Although this strategy improves anti-shock performance, it has a narrow stability bound. In this paper, we propose dead-zone with saturation nonlinear element for the nonlinear controller. Since this nonlinear element improves stability margin, we can use higher gain of dead-zone than the controller with dead-zone only. In the linear controller design, we show that lead-lag control has improved stability margin over PID control. Numerical simulation results show that the proposed method can get better performance to the external shock than previously proposed method.

  • PDF

Anti-shock Controller Design for Optical Disk Drive Systems with a Nonlinear Controller (광디스크 드라이브 시스템을 위한 비선형 Anti-shock 제어기 설계)

  • Baek Jong-Shik;Chung Chung Choo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.741-749
    • /
    • 2005
  • This paper presents a nonlinear controller design for optical disk drive systems to improve anti-shock performance. The nonlinear anti-shock controller is added parallel to the original linear servo control loop. In the previous work, a dead-zone nonlinear element is used for the nonlinear controller and a PID control method is used for the linear controller. Although this parallel structure of the controller improves anti-shock performance, it has a narrow stability bound. In this paper, the dead-zone with saturation nonlinear element is proposed for the nonlinear controller. Since this nonlinear element improves stability margin, we can use higher slope gain of dead-zone than that of nonlinear controller using dead-zone only. In the linear controller design, it is shown that the lead-lag control has an improved stability margin over PID control. Numerical simulation results and experimental results show that the proposed method can get better performance to the external shock than previously proposed methods.

Robust Active Noise Controller with Hybrid Adaptive Nonlinear Compensator

  • Kwon, Oh-Sang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1E
    • /
    • pp.16-22
    • /
    • 2009
  • In this paper, the new robust active noise controller was proposed to be applied for attenuating the noises when the nonlinear distortion in the secondary path exists. Through computer simulations as well as the analytical analysis, it could be shown that it is possible for both conventional LMS controller and proposed controller, to be applied for actively controlling the noises and linearizing the nonlinear distortion in the secondary path. Also, the simulations results demonstrated that the proposed controller may have faster convergence speed and better capability of controlling the noises and compensating the nonlinear distortion than the conventional LMS controller.

Nonlinear PID Controller with Neural Network based Compensator (신경회로망 보상기를 갖는 비선형 PID 제어기)

  • Lee, Chang-Gu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.225-234
    • /
    • 2000
  • In this paper, we present an nonlinear PID controller with network based compensator which consists of a conventional PID controller that controls the linear components and neuro-compensator that controls the output errors and nonlinear components. This controller is based on the Harris's concept where he explained that the adaptive controller consists of the PID control term and the disturbance compensating term. The resulting controller's architecture is also found to be very similar to that of Wang's controller. This controller adds a self-tuning ability to the existing PID controller without replacing it by compensating the output errors through the neuro-compensator. Various simulations and comparative studies have proven that the proposed nonlinear PID controller produces superior results to other existing PID controllers. When applied to an actual magnetic levitation system which is known to be very nonlinear, it has also produced an excellent results.

  • PDF

A Study on Nonlinear PID Controller Design Using a Cell-Mediated Immune Response (세포성 면역 반응을 이용한 비선형 PID 제어기 설계에 관한 연구)

  • Park Jin-Hyun;Choi Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.259-267
    • /
    • 2003
  • In this paper, we propose a nonlinear variable PID controller using a cell-mediated immune response. An immune feedback response is based on the functioning of biological T-cells. An immune feedback response and P-controller of conventional PID controllers resemble each other in role and mechanism. Therefore, we extend immune feedback mechanism to nonlinear PE controller. And in order to choose the optimal nonlinear PID controller games, we also propose the on-line tuning algorithm of nonlinear functions parameters in immune feedback mechanism. The trained parameters of nonlinear functions are adapted to the variations of the system parameters and any command velocity. And the adapted parameters obtained outputs of nonlinear functions with an optimal control performance. To verify performances of the proposed control systems, the speed control of nonlinear BC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system variations.

Adaptive nonlinear control with modular design (모듈라 설계기법에 의한 적응 비서형 제어)

  • 현근호;양해원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.633-635
    • /
    • 1997
  • In this paper we present a scheme of adaptive backstepping controller for nonlinear system. Backstepping approach has recently been adopted as a design tool for nonlinear control and especially backstepping with modular design used to seperately design controller and identifier. In the modular design the nonlinear damping term is contained in controller for input-to-state stability (ISS). We compare the ISS controller, which used in general case, with the weak-ISS controller that attenuates the effect of nonlinear damping term and prove their advantages and disadvantages by simulation.

  • PDF

Design of Nonlinear Adaptive Controller using Wavelet Neural Network (웨이브렛 신경회로망을 이용한 비선형 적응 제어기 설계)

  • 정경권;김주웅;엄기환;정성부;김한웅
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.17-20
    • /
    • 2001
  • In this paper, we design a nonlinear adaptive controller using wavelet neural network. The method proposed in this paper performs for a nonlinear system with unknown parameters, identification with using a wavelet neural network, and then a nonlinear adaptive controller is designed with those identified informations. The advantage of the proposed control method is simple to design a controller for unknown nonlinear systems, because we use the identified informations and design parameters are positioned within a negative real part of s-plane. The simulation results showed the effectiveness of proposed controller design method.

  • PDF

Nonlinear Controller and Observer Design for Ball and Beam (볼빔에 대한 비선형 제어기 및 관측기 설계)

  • 임규만
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.125-128
    • /
    • 2001
  • In this paper, We proposed the nonlinear controller and observer design for a ball and beam system. Unfortunately, for the ball and beam system, the control coefficient is zero whenever the angular velocity or ball position are zero. Therefore, the relative degree of the ball and beam system is not well defined. The presented the nonlinear controller and observer design is based on the approximation input-output feedback linearization. And we verified that the proposed nonlinear controller and observer scheme is the feasible through a computer simulation.

  • PDF

An Optimized Controller for Nonlinear Plant Based on Neural Network (신경망을 이용한 비선형 플렌트 최적제어에 관한 연구)

  • Min, Lin;XiaoBing, Zhao;Cho, Hyeon-Seob;Park, Wal-Seo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2490-2492
    • /
    • 2002
  • Design of controller of nonlinear systems is an important part of control research. In this paper, a controller for nonlinear plants using a neural network is presented. The controller is a combination of an approximate PID controller and a neural network controller. The PID controller be used for stabilizing the process and for compensating for possible disturbances, a neural network act as feedforward controller. In this method, a RBF neural network is trained and the system has a stable performance for the inputs it has been trained for. Simulation results show that it is very effective and can realize a satisfactory control of the nonlinear system and meets the demands of the system.

  • PDF

An Adaptive Controller Cooperating with Fuzzy Controller for Unstable Nonlinear Time-invariant Systems (불안정 비선형 시불변 시스템을 위한 퍼지제어기가 결합된 적응제어기)

  • Dae-Young, Kim;In-Hwan, Kim;Jong-Hwa, Kim;Byung-Kyul, Lee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.946-961
    • /
    • 2004
  • A new adaptive controller which combines a model reference adaptive controller (MRAC) and a fuzzy controller is developed for unstable nonlinear time-invariant systems. The fuzzy controller is used to analyze and to compensate the nonlinear time-invariant characteristics of the plant. The MRAC is applied to control the linear time-invariant subsystem of the unknown plant, where the nonlinear time-invariant plant is supposed to comprise a nonlinear time-invariant subsystem and a linear time-invariant subsystem. The stability analysis for the overall system is discussed in view of global asymptotic stability. In conclusion. the unknown nonlinear time-invariant plant can be controlled by the new adaptive control theory such that the output error of the given plant converges to zero asymptotically.