• 제목/요약/키워드: Nonlinear Joint

검색결과 447건 처리시간 0.024초

Joint stress based deflection limits for transmission line towers

  • Gayathri, B.;Ramalingam, Raghavan
    • Steel and Composite Structures
    • /
    • 제26권1호
    • /
    • pp.45-53
    • /
    • 2018
  • Experimental investigations have revealed significant mismatches between analytical estimates and experimentally measured deflections of transmission towers. These are attributed to bolt slip and joint flexibility. This study focuses on effects of joint flexibility on tower deflections and proposes criterions for permissible deflection limits based on the stresses in joints. The objective has been framed given that guidelines are not available in the codes of practices for transmission towers with regard to the permissible limits of deflection. The analysis procedure is geometric and material nonlinear with consideration of joint flexibility in the form of extension or contraction of the cover plates. The deflections due to bolt slip are included in the study by scaling up the deflections obtained from analysis by a factor. Using the results of the analysis, deflection limits for the towers are proposed by limiting the stresses in the joints. The obtained limits are then applied to a new full scale tower to demonstrate the application of the current study.

훅조인트로 연결된 축계의 비선형 비틀림 진동의 분기해석 :2-자유도계 모델 (Nonlinear Torsional Oscillations of a System incorporating a Hooke's Joint : 2-DOF Model)

  • 장서일
    • 한국소음진동공학회논문집
    • /
    • 제13권4호
    • /
    • pp.317-322
    • /
    • 2003
  • Torsional oscillations of a system incorporating a Hooke's joint are investigated by adopting a nonlinear 2-degree-of-freedom model. Linear and Van der Pol transformations are applied to obtain the equations of motion to which the method of averaging can be readily applied. Various subharmonic and combination resonances are identified with the conditions of their occurrences. Applying the method of averaging leads to the reduced amplitude- and phase-equations of motion, of which constant and periodic solutions are obtained numerically. The periodic solution which emerges from Hopf bifurcation point experiences period doubling bifurcation leading to infinite solution rather than chaotic solution.

보행시 젊은 남성에 대한 상.하체 주요 관절 운동의 카오스 분석 (Chaos Analysis of Major Joint Motions for Young Males During Walking)

  • 박정홍;김광훈;손권
    • 대한기계학회논문집A
    • /
    • 제31권8호
    • /
    • pp.889-895
    • /
    • 2007
  • Quantifying dynamic stability is important to assessment of falling risk or functional recovery for leg injured people. Human locomotion is complex and known to exhibit nonlinear dynamical behaviors. The purpose of this study is to quantify major joints of the body using chaos analysis during walking. Time series of the chaotic signals show how gait patterns change over time. The gait experiments were carried out for ten young males walking on a motorized treadmill. Joint motions were captured using eight video cameras, and then three dimensional kinematics of the neck and the upper and lower extremities were computed by KWON 3D motion analysis software. The correlation dimension and the largest Lyapunov exponent were calculated from the time series to quantify stabilities of the joints. This study presents a data set of nonlinear dynamic characteristics for eleven joints engaged in normal level walking.

Nonlinear FES Control of Knee Joint by Inversely Compensated Feedback System

  • Eom Gwang-Moon;Lee Jae-Kwan;Kim Kyeong-Seop;Watanabe Takashi;Futami Ryoko
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권3호
    • /
    • pp.302-307
    • /
    • 2006
  • The aim of applying Functional Electrical Stimulation (FES) is to restore a person's motor function by directly supplying the controlled electrical currents to the site of the paralyzed muscles. However, most clinically utilized FES systems have adapted an open-loop control scheme. Recently the closed-loop control scheme has been considered for setting up the FES system, but due to the inherent nonlinearities in the musculoskeletal system, the nonlinearities were not fully compensated and it caused the oscillatory responses for tracking the output variables. In this study, a nonlinear controller model that has two inverse compensation units is proposed with the compromising feedback linearization method and this will eventually be used to design the FES control system for stimulating a knee joint musculoskeletal system.

Seismic behavior evaluation of exterior beam-column joints with headed or hooked bars using nonlinear finite element analysis

  • Rajagopal, S.;Prabavathy, S.;Kang, Thomas H.K.
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.861-875
    • /
    • 2014
  • This paper studies the response of seismic behavior of reinforced concrete exterior beam-column joints under reversal loading with different anchorages and joint core details. The joint core was detailed without much confinement (group-I) and/or with proposed X-cross bars in the core (group-II). The beam longitudinal reinforcement's anchorages were designed as per ACI 352 (headed bars), ACI 318 (conventional $90^{\circ}$ bent hooks) and IS 456 ($90^{\circ}$ bent hooks with extended tails). The nonlinear finite element analysis response of the beam-column joints was studied, along with initial and progressive cracks up to failure. The experimental and analytical results were compared and presented in this paper to make more scientific conclusions.

A modified shell-joint model for segmental tunnel dislocations under differential settlement

  • Jianguo Liu;Xiaohui Zhang;Yuyin Jin;Wenyuan Wang
    • Geomechanics and Engineering
    • /
    • 제35권4호
    • /
    • pp.411-424
    • /
    • 2023
  • Reasonable estimates of tunnel lining dislocations in the operation stage, especially under longitudinal differential settlement, are important for the design of waterproof gaskets. In this paper, a modified shell-joint model is proposed to calculate shield tunnel dislocations under longitudinal differential settlement, with the ability to consider the nonlinear shear stiffness of the joint. In the case of shell elements in the model, an elastoplastic damage constitutive model was adopted to describe the nonlinear stress-strain relationship of concrete. After verifying its applicability and correctness against a full-scale tunnel test and a joint shear test, the proposed model was used to analyze the dislocation behaviors of a shield tunnel in Shanghai Metro Line 2 under longitudinal differential settlement. Based on the results, when the tunnel structure is solely subjected to water-earth load, circumferential and longitudinal joint dislocations are all less than 0.1 mm. When the tunnel suffers longitudinal differential settlement and the curvature radius of the differential settlement is less than 300 m, although maximum longitudinal joint dislocation is still less than 0.1 mm, the maximum circumferential joint dislocation is approximately 10.3 mm, which leads to leakage and damage of the tunnel structure. However, with concavo-convex tenons applied to circumferential joints, the maximum dislocation value reduces to 4.5 mm.

Analytical Modeling for Two-story Two-span Reinforced Concrete Frames with Relaxed Section Details

  • Kim, Taewan;Chu, Yurim;Park, Hong-Gun
    • Architectural research
    • /
    • 제20권2호
    • /
    • pp.53-64
    • /
    • 2018
  • A nonlinear analytical model has been proposed for two-span two-story reinforced concrete frames with relaxed section details. The analytical model is composed of beam, column, and beam-column joint elements. The goal of this study is to develop a simple and light nonlinear model for two-dimensional reinforced concrete frames since research in earthquake engineering is usually involved in a large number of nonlinear dynamic analyses. Therefore, all the nonlinear behaviors are modeled to be concentrated on flexural plastic hinges at the end of beams and columns, and the center of beam-column joints. The envelope curve and hysteretic rule of the nonlinear model for each element are determined based on experimental results, not theoretical approach. The simple and light proposed model can simulate the experimental results well enough for nonlinear analyses in earthquake engineering. Consequently, the proposed model will make it easy to developing a nonlinear model of the entire frame and help to save time to operate nonlinear analyses.

자유관절을 가진 2링크 암의 동특성과 제어 (Dynamic Characteristics and Control of Two-Link Arm with Free Joint)

  • 유기호
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.216-223
    • /
    • 2000
  • A robot arm with free joints has some advantages over conventional ones. A light weight and low power consumed arm can be made by a reduction of the number of joint actuators. And this arm can easily overcomes actuator failure due to unexpected accident. In general such underactuated arm does not have controllability because of the lack of joint actuators. The two-link arm with a free joint introduced in this paper is also uncontrollable in the sense of linear system theory. However, the linearized system sometimes can not represent the inherent dynamic behavior of the nonlinear system. In this paper the dynamic characteristics of the two-link arm with a free joint in view of global motion including damping and friction effect of the joints is investigated. In the case of considering only the damping effect, the controllable goal positions are confined to a specific trajectories. But in the case of considering the friction effect, the system can be controlled to arbitrary positions using the friction of the free joint as a holding brake. Also numerical example of position control is presented.

  • PDF

비선형강성의 유연관절로봇을 위한 가속도기반 비선형관측기 설계 (Design of Nonlinear Observer for Flexible Joint Manipulator with Nonlinear Stiffness Based on Acceleration)

  • 이승준;김형종;남경태;국태용
    • 전기학회논문지
    • /
    • 제64권3호
    • /
    • pp.451-457
    • /
    • 2015
  • In this paper, we consider the observer design problem that truly reflects the nonlinear stiffness of the manipulators. The two key ideas of our design are that (a) estimation error dynamics of the manipulator equipped with accelerometer dose not dependent on nonlinearities at the link part, when the measured signals are the motor position and the output of the accelerometer and (b) the nonlinear stiffness is indeed a Lipschitz function. In order to effectively compensate the nonlinear stiffness, the gain of the proposed observer is carefully chosen from the ARE(algebraic Riccati equations) which depend on Lipschitz constant. Comparative simulation result verifies the effectiveness of the proposed solution.

국내 철골골조의 접합부모델에 따른 내진성능 비교 (Comparison of Seismic Performance of Steel Moment Frame according to Different Analytic Joint Models)

  • 이준석;한상환;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.317-323
    • /
    • 2000
  • The purpose of this study is to compare the seismic resistant capacity inherent in ductile moment resisting frames using two different joint modeling. The difference between these two models is the capability for considering the panel zone deformation. For this purpose, 5 story steel moment frame is designed in compliance to the Korean seismic design provisions and the steel structure design standard. Nonlinear Static Procedure(NSP) and Nonlinear Dynamic Procedure(NDP) of this structure are carried out using two different joint models. Based on the results of NSP and NDP, the sensitivity of the response to analytical modeling is appraised. Also, it is proposed that for the highrise steel structures, the joint deformation should be accounted properly by the analytical model.

  • PDF