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Nonlinear FES Control of Knee Joint by Inversely Compensated
Feedback System

Gwang-Moon Eom, Jae-Kwan Lee, Kyeong-Seop Kim*, Takashi Watanabe, and Ryokoe Futami

Abstract: The aim of applying Functional Electrical Stimulation (FES) is to restore a person’s
motor function by directly supplying the controlled electrical currents to the site of the
paralyzed muscles. However, most clinically utilized FES systems have adapted an open-loop
control scheme. Recently the closed-loop control scheme has been considered for setting up the
FES system, but due to the inherent nonlinearities in the musculoskeletal system, the
nonlinearities were not fully compensated and it caused the oscillatory responses for tracking
the output variables. In this study, a. nonlinear controller model that has two inverse
compensation units is proposed with the compromising feedback linearization method and this
will eventually be used to design the FES control system for stimulating a knee joint

musculoskeletal system.

Keywords: Feedback linearization, FES, inverse compensation, knee joint musculoskeletal

system, nonlinear control.

1. INTRODUCTION

Functional Electrical Stimulation (FES) is defined
as “the electrical stimulation for assistance or
reconstruction of biological functions, with clear
purpose and understanding of the mechanism” [1-3].
It is an effective method for restoring motor functions
to the limbs paralyzed by spinal cord injury (SCI) or
cerebral apoplexy. It utilizes the controlled electrical
currents to evoke a certain skeletal muscle contraction
for the paralyzed patients by supplying the proper
electrical pulse trains to the intact muscles. However,
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due to the highly nonlinear nature of the
musculoskeletal system, most clinical FES systems
have been considered as only open-loop control
schemes to stimulate a specific pattern predetermined
by the relevant medical experts. [4,5]. Also, the
clinical oriented FES systems have employed the
open-loop control scheme because the closed-loop
feedback type is difficult to implement when attaching
the proper sensors so that good reproducibility at
every attachment is guaranteed [6]. Indeed, the
closed-loop EES clinical system induces rapid muscle
fatigue [7], spinal reflexes and spasticity [8]. Also,
due to the time-varying and unstable characteristics of
the muscle [9], more difficulties are imposed in
identifying the musculoskeletal system [10,11]. For
these reasons, the closed-loop feedback -control
approaches have been applied to the FES clinical
system only recently [12,13]. However, these efforts
were incapable of compensating the inherent
nonlinearities contained in the musculoskeletal system
and consequently the controllers often caused the
unstable oscillatory responses because they were not
suitable for the overall range of a patient’s motions
such as FES standing, walking or cycling. In [14,15],
a neural network based inverse model system trained
with the complex nonlinear mapping for the feed-
forward control was proposed for establishing a PID
feedback controller and yielded the better
performance. However, the stability issue remained
unresolved due to the black-box nature of the neural
network. Moreover, its nature does not provide any
intermediate variable or clue about the physiological
process. Effort was also put forth to apply the
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physiologically based model for modeling an inverse
system [12]. However, only the partial aspects of the
nonlinearities were compensated and consequently the
output system still had some oscillatory responses if
the extent of a certain posture of FES motions such as
standing or walking exceeds the range of the
compensated linearity. Thus, we try to completely
compensate the nonlinearities of a knee joint
musculoskeletal model through feedback linearization
with inverse compensation scheme and to suggest a
new linear control scheme for tracking the reference
trajectory of FES posture related with knee joint
movements.

2. KNEE JOINT MUSCULOSKELETAL
MODEL

The musculoskeletal system model of a knee joint
with quadriceps muscle, which has an important role
in FES standing, walking and cycling, is depicted as
three blocks as shown in Fig. 1.

In Fig. 1, the first block contains the recruitment
feature of muscle fibers, r(s) stimulated by the
intensity s, which is formulated in (1).

V(S)ZSC tanh(sh(s_xc))+yc' (1)

Here, the parameters of a rising and a falling path are
not identical and they represent the different hysteretic
characteristics depending on the path, i.e.,

1) On arising path: s, =5,.,8, =S4, X, =X, Ve = Vies

ii)On a falling path: s, =s4.,5, =54, %, =X, Ve = Ve

The first block also includes the 1% order activation
dynamics of the muscle’s normalized active state
corresponding to the calcium release. The activation
dynamics, a(?) is described by
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Fig. 1. A musculoskeletal system model of a knee
joint.

a=(r-ay/t, +(r—(a—agp)—(r—ay)/7,.(2)

Here, the time constants of 7, and 7, are the
different rates of calcium release to and uptake from
muscle fibers, respectively and a,;, is the minimal

active state.

The second block in Fig. 1 includes the 1% order
muscle contraction dynamics. We adopted a lumped
model of musculotendon and a moment arm as
indicated in the lower schematics of Fig. 1 to refer the
muscle to a torque generator [13]. The contraction
dynamics of the musculotendon was stated as
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Here, 7, is the active muscle torque, k) and &, are

the parameters of series elastic element (SE). ani( is
the maximum contraction velocity of the contractile
element (CE), g-p() is the inverse function of

torque-angular velocity relationship of the CE, 7,,

is the maximum muscle torque and k-z() is the

torque-angle relationship of the CE.
The third block of Fig. 1 can be described by the
following 2™ order skeletal dynamics:

6" =1/ 1(% ~Gsin(0")-D&” +s (e‘s2(9V+9UL) —1)). 4)

Here, 0" is the knee joint angle with reference to the
vertical line, / and G are the moment of inertia and the
gravity constant of the lower leg, respectively. The

. v, UL
latter term of (4), —DB" +s, (@29 97 _1) repre-
sents the damping and elastic torque induced by the
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Table 1. Knee joint, vastus lateralis muscle parameters
used in our computer simulation.

e | 1.661 | 7. | 0.02 | sk | 0.25 {she®| 0.2
sy | 2346 | 7, | 02 |sh,*| 025 | s |-0.18
%, [ 1.143 | ay, | 0.001 | x | 02 | 6% |3.491
Ve | 1538 |sh™ | 27 | » | 03 | 1 | 044
se [ 0.516 | 6% 10384 | 6% |3.491| G | 165
Sp | 7.054 | 67 | 0.154 [sh™ | 02 | D | 0.22
% [0.792 | e | 1132 & [ 075 | s [0.092
Vi | 0.536 [ 65 | 18 | 6% |3.456] s, | 5.09

passive system, such that D, s, s, are the constants

and @Y is the angle of the upper leg with reference
to the horizontal line. The muscle contraction and
skeletal dynamics stated in (3) and (4) can be
alternatively expressed by the state space representa-

tion form as stated in (5) if we define x =7,
Xy = 6, X3 = 6" and the output variable, y= 9" .

X = (kyxq t kykyt

max)'
(—x3 ~Oagce (% (fmaxker (31 %2 )a))),

Jbz = X3,
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The identification procedures determining muscle
parameters shown in Table 1 are listed in [13,16] and
the accuracy of the model parameters are evaluated by
tracking the model-predicted joint angle trajectories
compared with experimental data [13].

3. NONLINEAR CONTROLLER DESIGN

The main control task of our study is to force a
certain knee joint angle to track the reference
trajectory. The overall control system structure is
shown in Fig. 2.

The central idea of our suggested controller is
utilizing a feedback linearization. In other words, we
approximate a nonlinear system dynamics into a linear
one with applying the algebraic transformation. With
this scheme, the inherent nonlinearities contained in a
musculoskeletal system model of the knee joint are
vanished, and consequently the relatively simple
linear control scheme can be applied. In Fig. 2, two
inverse compensation units for the feedback
linearization are described [17]. The first inverse
compensation unit as stated in the following equation

is to eliminate the nonlinearity of a term, galg
(xl I (Tmaxkce (1,3 )a)) , which represents the muscle

contraction dynamics.

UL iy =
X = 1/1(x1 — Gsin(x, ) — Dx; + 51 (e‘sz("ﬁe ) 1)) i’
) —xji;,, + shy Owg Hﬁx
y=x. CE CE
Shlowg 2-manCE (xl >X2 )um + Shlowg 6 makaE (xl ’ x2)
Thus the overall plant (musculoskeletal system) .
dynamics can be interpreted as a 4™ order system Os—— <))
composing of i) one activation dynamic unit, ii) one Tmaxkce (¥1,%)a
contraction dynamics unit, iii) two skeletal dynamics e GCE
. . . XUy, + X Sh 6max 1

units. For our computer simulations, we adopted the
estimated knee joi‘nt apd vastus lateralis muscle ((YeShy, & + vy + D Tpaxtlin + X sh Fe 9 Tonax kg (%15 %7)
parameters that are identified by the lump parameters x
for knee extensors for the voluntary contraction and Is——L  <13)
for knee joints with the vastus lateralis muscle, Tmaxkce (%1, X2)a
respectively as stated in Table 1. (6)
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Fig. 2. The proposed control system structure.
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In (6), wu; is the control input and required
recruitment r;,, is the output. The second inverse
compensation unit as stated in the following equation
is to remove the nonlinearity of the recruitment.

s=In((r5, + (5. = ¥))/ (i + (50 +32))) 284 +x..(7)

In (7), r» is the input and the normalized
stimulation intensity, s is the output. Since the
normalized active state a in (2) is not measurable, it
is regarded as a bounded and structured uncertainty.
Then, the diffeomorphism (state transfer) [18] is
defined as in (8) and the control law (input transfer)
u;, 1s defined as in (9), respectively.

G =y=x,

S =y=x;,

E=y=x/1-Gsin(xy)/ I -Dx3/1 ®)
+ 51 (exp(=s, (x, + 8" -1/ 1,

u;, =(v—B(x))/ A(x), ©)

where

A(x) = -—(kle + klkZTmax)/I’
B(x) = (kyxy + ko Tpg (X3 +1) /1 = Gcos(xy )xy /1
—D(x; /1 —-Gsin(xy)/1—Dxz /1

5 (exp(—s2 (xy + YY) - 1)/1)/1

+ 51(—55 exp(—=s, (x5 + oYt Nay)/ 1.

(9) is derived by combining the diffeomorphism of
(8) and the control law. The input to the control law
v is selected as stated in (10) and (11),

y=v, (10)
V=3, + (3. — &)+ (3, - &) +ap (v, — &), (11)

where a,,0q,0q are the coefficients of the Hurwitz

polynomial s°+ a252 +ays +ap. The Hurwitz poly-
nomial coefficients are chosen with considering the
behavior and response of the closed-loop system in
terms of overshoot, rising time and settling time.
Since the degree of the control system is three, we
need to differentiate the output three times to get the
control input.

The reference trajectory y,(f) was set as a sinusoidal
function, which is useful in clinical practice because it
is often used for paralyzed muscle training. The
simulation result is shown in Fig. 3. With the inverse
compensations of nonlinearities and the feedback
linearization stated above, the stable output tracking
of the overall closed-loop system was successfully
achieved.

50

. reference trajectory —————— :

| knee joint angle

Angle [deg]

Fig. 3. The simulation result of FES nonlinear control.

4. CONCLUSIONS

As we mentioned earlier, the recent closed-loop
control schemes for FES do not completely
compensate the nonlinearities of the plant and
consequently often lead to the oscillatory responses.
Our control plant shows better performance in terms
of output tracking. Also, the output of the control
system achieves the stable conditions by utilizing a
feedback linearization with considering inverse
compensations. Thus, we believe that we have
suggested a new promising application especially for
controlling the inherent nonlinearity of the FES
system. In other words, we propose a new nonlinear
control scheme to track a referenced angle trajectory
of the paralyzed knee joint with implementing a
controller composing two linearization units.

For the real clinical application of our control
scheme, the following two issues must be considered.
Firstly, the model parameters must be easily identitied
so that we can minimize the physical and
psychological burdens of a patient. Secondly, the
control scheme must be improved to be adaptive to
time varying factors in the musculoskeletal system
such as muscle fatigue.
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