• Title/Summary/Keyword: Nonlinear Boundary Condition

Search Result 352, Processing Time 0.025 seconds

Ultrasonic waves in a single walled armchair carbon nanotube resting on nonlinear foundation subjected to thermal and in plane magnetic fields

  • Selvamani, Rajendran;Jayan, M. Mahaveer Sree;Ebrahimi, Farzad
    • Coupled systems mechanics
    • /
    • v.10 no.1
    • /
    • pp.39-60
    • /
    • 2021
  • The present paper is concerned with the study of nonlinear ultrasonic waves in a magneto thermo (MT) elastic armchair single-walled carbon nanotube (ASWCNT) resting on polymer matrix. The analytical formulation is developed based on Eringen's nonlocal elasticity theory to account small scale effect. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been analyzed numerically by using the nonlinear foundations supported by Winkler-Pasternak model. The solution is obtained by ultrasonic wave dispersion relations. Parametric work is carried out to scrutinize the influence of the non local scaling, magneto-mechanical loadings, foundation parameters, various boundary condition and length on the dimensionless frequency of nanotube. It is noticed that the boundary conditions, nonlocal parameter, and tube geometrical parameters have significant effects on dimensionless frequency of nano tubes. The results presented in this study can provide mechanism for the study and design of the nano devices like component of nano oscillators, micro wave absorbing, nano-electron technology and nano-electro- magneto-mechanical systems (NEMMS) that make use of the wave propagation properties of armchair single-walled carbon nanotubes embedded on polymer matrix.

MULTIPLICITY AND NONLINEARITY IN THE NONLINEAR ELLIPTIC SYSTEM

  • Jung, Tack-Sun;Choi, Q-Heung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.3
    • /
    • pp.161-169
    • /
    • 2008
  • We investigate the existence of solutions u(x, t) for perturbations of the elliptic system with Dirichlet boundary condition $$\array {L{\xi}+{\mu}g({\xi}+2{\eta})=f\;in\;{\Omega}}\\{L{\eta}+{\nu}g({\xi}+2{\eta})=f\;in\;{\Omega}}$$ (0.1) where $g(u)=Bu^+-Au^-$, $u^+=max\{u,\;0\}$, $u^-=max\{-u,\;0\}$, ${\mu}$, ${\nu}$ are nonzero constants and the nonlinearity $({\mu}+2{\nu})g(u)$ crosses the eigenvalues of the elliptic operator L.

  • PDF

AN APPLICATION OF CRITICAL POINT THEORY TO THE NONLINEAR HYPERBOLIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.15 no.2
    • /
    • pp.149-165
    • /
    • 2007
  • We investigate the existence of multiple nontrivial solutions $u(x,t)$ for a perturbation $b[({\xi}-{\eta}+2)^+-2]$ of the hyperbolic system with Dirichlet boundary condition $$(0.1)\;L{\xi}={\mu}[({\xi}-{\eta}+2)^+-2]\;in\;({-{\frac{{\pi}}{2}}},{\frac{{\pi}}{2}}){\times}\mathbb{R},\\L{\eta}={\nu}[({\xi}-{\eta}+2)^+-2]\;in\;({-{\frac{{\pi}}{2}}},{\frac{{\pi}}{2}}){\times}\mathbb{R},$$, where $u^+$=max{u,o}, ${\mu}$, ${\nu}$ are nonzero constants. Here L is the wave operator in $\mathbb{R}^2$ and the nonlinearity $({\mu}-{\nu})[({\xi}-{\eta}+2)^+-2]$ crosses the eigenvalues of the wave operator.

  • PDF

IMPROVED MULTIPLICITY RESULTS FOR FULLY NONLINEAR PARABOLIC SYSTEMS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.3
    • /
    • pp.283-291
    • /
    • 2009
  • We investigate the existence of multiple solutions (${\xi},{\eta}$) for perturbations of the parabolic system with Dirichlet boundary condition $$(0.1)\;\begin{array}{lcr}{\xi}_t=-L{\xi}+g_1(3{\xi}+{\eta})-s{\phi}_1-h_1(x,t)\;in\;{\Omega}{\times}(0,\;2{\pi}),\\{\eta}_t=-L{\eta}+g_2(3{\xi}+{\eta})-s{\phi}_1-h_2(x,t)\;in\;{\Omega}{\times}(0,\;2{\pi}).\end{array}$$ We show the existence of multiple solutions (${\xi},{\eta}$) for perturbations of the parabolic system when the nonlinearity $g^{\prime}_1,\;g^{\prime}_2$ are bounded and $3g^{\prime}_1(-{\infty})+g^{\prime}_2(-{\infty})<{\lambda}_1,\;{\lambda}_n<3g^{\prime}_1(+{\infty})+g^{\prime}_2(+{\infty})<{\lambda}_{n+1}$.

  • PDF

UNIQUENESS RESULTS FOR THE NONLINEAR HYPERBOLIC SYSTEM WITH JUMPING NONLINEARITY

  • Jung, Tack-Sung;Choi, Q-Heung
    • Honam Mathematical Journal
    • /
    • v.29 no.4
    • /
    • pp.723-732
    • /
    • 2007
  • We investigate the existence of solutions u(x, t) for a perturbation b[$(\xi+\eta+1)^+-1$] of the hyperbolic system with Dirichlet boundary condition (0.1) = $L\xi-{\mu}[(\xi+\eta+1)^+-1]+f$ in $(-\frac{\pi}{2},\frac{\pi}{2}\;{\times})\;\mathbb{R}$, $L\eta={\nu}[(\xi+\eta+1)^+-1]+f$ in $(-\frac{\pi}{2},\frac{\pi}{2}\;{\times})\;\mathbb{R}$ where $u^+$ = max{u,0}, ${\mu},\nu$ are nonzero constants. Here $\xi,\eta$ are periodic functions.

Solutions of the Navier-Stokes equation in slip flow region (Slip flow 영역에서 Navier Stokes 방정식의 해석 연구)

  • Park, W.H.;Kim, T.K.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.597-602
    • /
    • 2000
  • In a MEMS(micro-electro mechanical system), the fluid may slip near the surface of a solid and have a discontinuous temperature profile. A numerical prediction in this slip flow region can provide a reasonable guide for the design and fabrication of micro devices. The compressible Navier-Stokes equation with Maxwell/smoluchowski boundary condition is solved for two simple systems; couette flow and pressure driven flow in a long channel. We found that the couette flow could be regarded as an incompressible system in low speed regions. For the pressure driven flow system, we observed nonlinear distribution of pressure in the long channel and numerical results showed a good agreement with the experimental results.

  • PDF

Analytical approximate solutions for large post-buckling response of a hygrothermal beam

  • Yu, Yongping;Sun, Youhong
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.211-223
    • /
    • 2012
  • This paper deals with large deformation post-buckling of a linear-elastic and hygrothermal beam with axially nonmovable pinned-pinned ends and subjected to a significant increase in swelling by an alternative method. Analytical approximate solutions for the geometrically nonlinear problem are presented. The solution for the limiting case of a string is also obtained. By coupling of the well-known Maclaurin series expansion and orthogonal Chebyshev polynomials, the governing differential equation with sinusoidal nonlinearity can be reduced to form a cubic-nonlinear equation, and supplementary condition with cosinoidal nonlinearity can also be simplified to be a polynomial integral equation. Analytical approximations to the resulting boundary condition problem are established by combining the Newton's method with the method of harmonic balance. Two approximate formulae for load along axis, potential strain for free hygrothermal expansion and periodic solution are established for small as well as large angle of rotation at the end of the beam. Illustrative examples are selected and compared to "reference" solution obtained by the shooting method to substantiate the accuracy and correctness of the approximate analytical approach.

Analysis of Steady Vortex Rings Using Contour Dynamics Method for Fluid Velocity

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.108-114
    • /
    • 2022
  • Most studies on the shape of the steady vortex ring have been based on the Stokes stream function approach. In this study, the velocity approach is introduced as a trial approach. A contour dynamics method for fluid velocity is used to analyze the Norbury-Fraenkel family of vortex rings. Analytic integration is performed over the logarithmic-singular segment. A system of nonlinear equations for the discretized shape of the vortex core is formulated using the material boundary condition of the core. An additional condition for the velocities of the vortical and impulse centers is introduced to complete the system of equations. Numerical solutions are successfully obtained for the system of nonlinear equations using the iterative scheme. Specifically, the evaluation of the kinetic energy in terms of line integrals is examined closely. The results of the proposed method are compared with those of the stream function approaches. The results show good agreement, and thereby, confirm the validity of the proposed method.

Seismic Fragility Analysis by Boundary Conditions of a Two-pylon Concrete Cable-stayed Bridge (2주탑 콘크리트 사장교의 경계조건별 지진 취약도 분석)

  • Shin, Yeon-Woo;Hong, Ki-Nam;Yeon, Yeong-Mo;Ji, Sang-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.77-85
    • /
    • 2020
  • In this study, the seismic fragility curve according to the boundary conditions is created for a two-pylon concrete cable-stayed bridge, and the effect of the boundary conditions on the seismic fragility of the target bridge is evaluated. An analysis model for the target bridge is constructed using Midas Civil, and a nonlinear time history analysis is performed by applying the fiber element, concrete and rebar material models. The boundary conditions between the pylon and the stiffened girder are classified into four types: rigid, unconstrained, pot bearing, and seismic isolation bearing, and the seismic fragility curves are created for each boundary condition. The plastic hinge section of the pylon, the connection part, and the cable are selected as weak members, and the earthquake vulnerability curve is created for them. As a result of the analysis, it is found that the seismic isolation bearing model shows the lowest damage probability in the pylon and the connection part, and the seismic fragility of the cable is less affected by the boundary conditions than other members.

Moving boundary condition for simulation of inundation (범람 모의를 위한 이동경계조건)

  • Lin, Tae-hoon;Lee, Bong-Hee;Cho, Dae-Hee;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.937-947
    • /
    • 2003
  • A shoreline, which has no the water depth, moves continuously as waves rise up and recede. Therefore, a special boundary treatment is required to track properly the movements of the shoreline in numerical modeling of the behavior of tsunamis or tides near a coastal zone. In this study, convective terms in nonlinear shallow-water equations are discretized explicitly by using a second-order upwind scheme to describe a moving shoreline more accurately. An oscillatory flow motion in a circular paraboloidal basin has been employed to validate the performance of the developed numerical model. Computed results of instantaneous free surface displacements are compared with those of analytical solutions and existing numerical solutions. The run-up heights in the vicinity of a circular island have also been calculated and obtained numerical results have been shown against available laboratory measurements. A good agreement has been observed.